Geodesic-Based Maximal Cliques Search for Non-Rigid Human Point Cloud Registration
Abstract
:1. Introduction
- We propose a novel non-rigid point cloud registration method that leverages maximal clique searching within constructed graphs based on geodesic distance measurements. This innovative approach enables the accurate identification of correct correspondences in human point clouds by effectively filtering initial correspondences derived from simple feature matching. By utilizing maximal cliques, our method ensures robust correspondence selection, enhancing the precision and reliability of the registration process.
- We have designed an efficient, model-based optimization procedure that automatically filters the matching pair sets generated by maximal cliques. This optimization framework significantly enhances the robustness of our non-rigid registration method, particularly in scenarios involving large motions. By systematically refining the correspondence pairs, our approach minimizes errors and maintains high registration accuracy, even under substantial deformations and dynamic movements.
2. Related Works
2.1. Geometric Optimization Algorithms
2.1.1. Local Rigidity Assumption
2.1.2. Continuity Assumption
2.1.3. As-Rigid-As-Possible (ARAP) Assumption
2.1.4. Deep Learning Algorithms
3. Methods
3.1. Summary
- (1)
- Maximal Clique Search for Sparse Correspondence Generation
- Feature Extraction and Initial Matching: Extract features from both the source and target point clouds and perform feature matching to generate initial correspondences.
- Graph Construction with Second-Order Spatial Compatibility: Construct a compatibility graph using second-order spatial relationships among the matching pairs. The spatial compatibility measure is based on geodesic distances between point pairs.
- Maximal Clique Search: Search for maximal cliques within the constructed graph that satisfy the geodesic distance constraints, thereby generating robust sets of matching pairs.
- (2)
- Inverse Kinematics Optimization for Pose Estimation
3.2. Geodesic-Based Maximal Cliques Search
3.2.1. Correspondence Initialization
- (1)
- Feature Extraction
- (2)
- Feature Matching
3.2.2. Second-Order Spatial Compatibility with Geodesic Distance Measurement
- (1)
- Geodesic Distance Measurement
- (2)
- First-order spatial compatibility
- (3)
- Second-order spatial compatibility
3.2.3. Maximal Cliques Search
- For every pair of vertices , there is an edge , meaning that all correspondences in the clique are mutually compatible.
- The clique is maximal, meaning that no additional vertices from the graph can be added to the clique without violating the clique property (i.e., without breaking the spatial compatibility condition).
3.3. SMPL Inverse Kinematics with Sparse Correspondences
3.3.1. Rigid Transform Estimation
3.3.2. Non-Rigid Registration with Sparse Correspondences
4. Experiments
4.1. Datasets
- (1)
- FAUST Dataset
- (2)
- CAPE Dataset
4.2. Sparse Correspondence Evaluation
4.2.1. FAUST Dataset Sparse Correspondence Evaluation
4.2.2. CAPE Dataset Evaluation
4.2.3. Comparison Between First-Order and Second-Order Methods
4.2.4. Time Consumption Analysis
4.3. Non-Rigid Registration Evaluation
4.3.1. FAUST Dataset Evaluation
4.3.2. CAPE Dataset Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SMPL | Skinned Multi-Person Linear model |
ICP | Iterative Closest Point |
CPD | Coherent Point Drift |
ARAP | As Rigid As Possible |
FHPF | Fast Point Feature Histogram |
SHOT | Signature of Histograms of Orientations |
SC | Spatial Compatibility |
GBMAC | Geodesic-Based Maximal Clique |
References
- Marin, R.; Melzi, S.; Rodola, E.; Castellani, U. Farm: Functional automatic registration method for 3d human bodies. In Computer Graphics Forum; Wiley Online Library: Hoboken, NJ, USA, 2020; Volume 39, pp. 160–173. [Google Scholar]
- Ge, S.; Fan, G. Non-rigid articulated point set registration for human pose estimation. In Proceedings of the 2015 IEEE Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 5–9 January 2015; pp. 94–101. [Google Scholar]
- Amberg, B.; Romdhani, S.; Vetter, T. Optimal step nonrigid ICP algorithms for surface registration. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 7–22 June 2007; pp. 1–8. [Google Scholar]
- Cheng, S.; Marras, I.; Zafeiriou, S.; Pantic, M. Statistical non-rigid ICP algorithm and its application to 3D face alignment. Image Vis. Comput. 2017, 58, 3–12. [Google Scholar] [CrossRef]
- Hegde, S.B.; Gangisetty, S. An Evaluation of Feature Encoding Techniques for Non-Rigid and Rigid 3D Point Cloud Retrieval. In Proceedings of the BMVC, Cardiff, UK, 9–12 September 2019; p. 47. [Google Scholar]
- Hirose, O. A Bayesian formulation of coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 2269–2286. [Google Scholar] [CrossRef] [PubMed]
- Zollhöfer, M.; Nießner, M.; Izadi, S.; Rehmann, C.; Zach, C.; Fisher, M.; Wu, C.; Fitzgibbon, A.; Loop, C.; Theobalt, C.; et al. Real-time non-rigid reconstruction using an RGB-D camera. ACM Trans. Graph. (ToG) 2014, 33, 1–12. [Google Scholar] [CrossRef]
- Qin, Z.; Yu, H.; Wang, C.; Peng, Y.; Xu, K. Deep Graph-Based Spatial Consistency for Robust Non-Rigid Point Cloud Registration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 5394–5403. [Google Scholar]
- Zhao, M.; Yu, X.; Hu, X.; Wang, F.; Xu, L.; Ji, X. Bidirectional Patch-based Correlations with Local Rigidity for Global Nonrigid Registration. IEEE Trans. Circuits Syst. Video Technol. 2024, 1. [Google Scholar] [CrossRef]
- Liu, W.; Wu, H.; Chirikjian, G.S. LSG-CPD: Coherent point drift with local surface geometry for point cloud registration. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 15293–15302. [Google Scholar]
- Gao, Q.; Zhao, Y.; Xi, L.; Tang, W.; Wan, T.R. Break and Splice: A Statistical Method for Non-Rigid Point Cloud Registration. In Computer Graphics Forum; Wiley Online Library: Hoboken, NJ, USA, 2023; Volume 42, p. e14788. [Google Scholar]
- Li, K.; Yang, J.; Lai, Y.K.; Guo, D. Robust non-rigid registration with reweighted position and transformation sparsity. IEEE Trans. Vis. Comput. Graph. 2018, 25, 2255–2269. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Deng, B.; Xu, W.; Zhang, J. Quasi-newton solver for robust non-rigid registration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 7600–7609. [Google Scholar]
- Lin, M.; Murali, V.; Karaman, S. A planted clique perspective on hypothesis pruning. IEEE Robot. Autom. Lett. 2022, 7, 5167–5174. [Google Scholar] [CrossRef]
- Lin, Y.K.; Lin, W.C.; Wang, C.C. K-closest points and maximum clique pruning for efficient and effective 3-d laser scan matching. IEEE Robot. Autom. Lett. 2022, 7, 1471–1477. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, J.; Zhang, S.; Zhang, Y. 3D registration with maximal cliques. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 17745–17754. [Google Scholar]
- Bogo, F.; Black, M.J.; Loper, M.; Romero, J. Detailed full-body reconstructions of moving people from monocular RGB-D sequences. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 2300–2308. [Google Scholar]
- Zuo, X.; Wang, S.; Zheng, J.; Yu, W.; Gong, M.; Yang, R.; Cheng, L. Sparsefusion: Dynamic human avatar modeling from sparse rgbd images. IEEE Trans. Multimed. 2020, 23, 1617–1629. [Google Scholar] [CrossRef]
- Anguelov, D.; Srinivasan, P.; Koller, D.; Thrun, S.; Rodgers, J.; Davis, J. Scape: Shape completion and animation of people. In ACM SIGGRAPH 2005 Papers; ACM: New York, NY, USA, 2005; pp. 408–416. [Google Scholar]
- Joo, H.; Simon, T.; Sheikh, Y. Total capture: A 3d deformation model for tracking faces, hands, and bodies. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8320–8329. [Google Scholar]
- Loper, M.; Mahmood, N.; Romero, J.; Pons-Moll, G.; Black, M.J. SMPL: A skinned multi-person linear model. ACM Trans. Graph. (TOG) 2015, 34, 1–16. [Google Scholar] [CrossRef]
- Pavlakos, G.; Choutas, V.; Ghorbani, N.; Bolkart, T.; Osman, A.A.; Tzionas, D.; Black, M.J. Expressive body capture: 3d hands, face, and body from a single image. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 10975–10985. [Google Scholar]
- Gall, J.; Rosenhahn, B.; Brox, T.; Seidel, H.P. Optimization and filtering for human motion capture. Int. J. Comput. Vis. 2010, 87, 75–92. [Google Scholar] [CrossRef]
- Sun, K.; Xiao, B.; Liu, D.; Wang, J. Deep high-resolution representation learning for human pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5693–5703. [Google Scholar]
- Li, H.; Sumner, R.W.; Pauly, M. Global correspondence optimization for non-rigid registration of depth scans. In Computer Graphics Forum; Wiley Online Library: Hoboken, NJ, USA, 2008; Volume 27, pp. 1421–1430. [Google Scholar]
- Sorkine, O.; Alexa, M. As-rigid-as-possible surface modeling. In Symposium on Geometry Processing; Citeseer: Kitchener, ON, USA, 2007; Volume 4, pp. 109–116. [Google Scholar]
- Li, Z.; Heyden, A.; Oskarsson, M. Template based Human Pose and Shape Estimation from a Single RGB-D Image. In Proceedings of the ICPRAM, Prague, Czech Republic, 19–21 February 2019; pp. 574–581. [Google Scholar]
- Liu, G.; Rong, Y.; Sheng, L. VoteHMR: Occlusion-aware voting network for robust 3D human mesh recovery from partial point clouds. In Proceedings of the 29th ACM International Conference on Multimedia, Virtual Event, China, 20–24 October 2021; pp. 955–964. [Google Scholar]
- Wang, S.; Geiger, A.; Tang, S. Locally aware piecewise transformation fields for 3d human mesh registration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 7639–7648. [Google Scholar]
- Jiang, H.; Cai, J.; Zheng, J. Skeleton-aware 3d human shape reconstruction from point clouds. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 5431–5441. [Google Scholar]
- Ying, J.; Zhao, X. RGB-D fusion for point-cloud-based 3D human pose estimation. In Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22 September 2021; pp. 3108–3112. [Google Scholar]
- Chen, Z.; Sun, K.; Yang, F.; Tao, W. Sc2-pcr: A second order spatial compatibility for efficient and robust point cloud registration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 13221–13231. [Google Scholar]
- Bogo, F.; Romero, J.; Loper, M.; Black, M.J. FAUST: Dataset and evaluation for 3D mesh registration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 3794–3801. [Google Scholar]
- Zhang, C.; Pujades, S.; Black, M.J.; Pons-Moll, G. Detailed, accurate, human shape estimation from clothed 3D scan sequences. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4191–4200. [Google Scholar]
- Tam, G.K.; Martin, R.R.; Rosin, P.L.; Lai, Y.K. Diffusion pruning for rapidly and robustly selecting global correspondences using local isometry. ACM Trans. Graph. 2014, 33, 4. [Google Scholar] [CrossRef]
- Hirose, O. Geodesic-Based Bayesian Coherent Point Drift. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 5816–5832. [Google Scholar] [CrossRef] [PubMed]
- Tombari, F.; Salti, S.; Di Stefano, L. Unique signatures of histograms for local surface description. In Proceedings of the Computer Vision–ECCV 2010: 11th European Conference on Computer Vision, Heraklion, Crete, Greece, 5–11 September 2010; Proceedings, Part III 11. Springer: Berlin/Heidelberg, Germany, 2010; pp. 356–369. [Google Scholar]
Pose Pair | Initialization | Diffusion Pruning | GBMAC | |||
---|---|---|---|---|---|---|
Cor. | Correct Cor. | Cor. | Correct Cor. | Cor. | Correct Cor. | |
1 | 2985 | 424 | 420 | 408 | 2773 | 2700 |
2 | 3437 | 945 | 943 | 941 | 1762 | 1738 |
3 | 3182 | 804 | 782 | 776 | 1519 | 1483 |
4 | 3492 | 989 | 984 | 981 | 3224 | 3163 |
5 | 3421 | 1028 | 1028 | 1025 | 2635 | 2590 |
6 | 2977 | 589 | 580 | 567 | 2031 | 1998 |
7 | 2572 | 93 | 91 | 68 | 982 | 953 |
8 | 2297 | 20 | 36 | 6 | 146 | 109 |
9 | 2976 | 491 | 476 | 461 | 2812 | 2758 |
Ave. | 3145 | 704 | 699 | 691 | 1987 | 1944 |
Pose Pair | Initialization | Diffusion Pruning | GBMAC | |||
---|---|---|---|---|---|---|
Cor. | Correct Cor. | Cor. | Correct Cor. | Cor. | Correct Cor. | |
1 | 2670 | 295 | 311 | 281 | 895 | 836 |
2 | 3105 | 544 | 550 | 531 | 1288 | 1169 |
3 | 3013 | 612 | 621 | 598 | 1619 | 1509 |
4 | 3251 | 774 | 772 | 758 | 1269 | 1175 |
5 | 3054 | 356 | 363 | 340 | 1073 | 953 |
6 | 2725 | 320 | 332 | 303 | 1282 | 1170 |
7 | 2645 | 237 | 252 | 222 | 1020 | 908 |
8 | 2939 | 703 | 707 | 690 | 1189 | 1131 |
9 | 2553 | 167 | 182 | 149 | 901 | 820 |
10 | 2395 | 87 | 114 | 78 | 298 | 248 |
Ave. | 2835 | 410 | 421 | 395 | 1084 | 992 |
Process | Time (s) |
---|---|
Initial Correspondences | 12.6 |
Graph Construction | 18.8 |
Maximal Clique Search | 67.5 |
Hypothesis Evaluation | 21.7 |
Total | 120.6 |
Pose Pairs | GBCPD | NICP | RPTS | Fast RNRR | DP-SMPL | GBMAC |
---|---|---|---|---|---|---|
1 | 56.59 | 44.59 | 11.97 | 11.04 | 14.46 | 8.03 |
2 | 23.20 | 19.73 | 10.11 | 9.65 | 5.93 | 7.29 |
3 | 286.19 | 65.13 | 11.34 | 12.40 | 9.58 | 8.59 |
4 | 32.33 | 27.23 | 10.08 | 9.98 | 6.42 | 7.06 |
5 | 17.60 | 15.51 | 9.35 | 9.52 | 6.33 | 6.94 |
6 | 406.32 | 50.27 | 10.87 | 10.33 | 24.53 | 8.13 |
7 | 434.26 | 157.49 | 35.07 | 31.86 | 40.54 | 9.72 |
8 | 241.91 | 220.24 | 183.95 | 228.74 | 70.03 | 15.79 |
9 | 438.50 | 59.34 | 10.89 | 11.94 | 18.94 | 8.19 |
Ave. | 215.21 | 73.28 | 32.63 | 37.27 | 21.86 | 8.86 |
Pose Series | BCPD | NICP | RPTS | Fast RNRR | DP-SMPL | GBMAC |
---|---|---|---|---|---|---|
1 | 65.71 | 225.82 | 113.92 | 100.07 | 137.99 | 20.71 |
2 | 132.79 | 71.70 | 22.84 | 22.41 | 20.91 | 23.71 |
3 | 157.79 | 190.16 | 131.03 | 113.31 | 120.20 | 15.15 |
4 | 180.07 | 71.13 | 51.45 | 46.15 | 11.33 | 12.97 |
5 | 108.45 | 138.98 | 19.43 | 17.01 | 39.95 | 17.84 |
6 | 148.32 | 165.45 | 58.89 | 59.30 | 70.45 | 19.22 |
7 | 289.61 | 245.75 | 231.03 | 240.29 | 225.74 | 24.60 |
8 | 150.21 | 96.44 | 34.21 | 32.80 | 15.88 | 20.19 |
9 | 110.17 | 284.97 | 198.32 | 204.83 | 249.95 | 21.82 |
10 | 446.41 | 457.97 | 409.23 | 411.68 | 322.52 | 50.82 |
Ave. | 178.95 | 194.84 | 127.04 | 124.78 | 121.49 | 22.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gan, S.; Xu, G.; Zhuge, S.; Zhang, G.; Zhang, X. Geodesic-Based Maximal Cliques Search for Non-Rigid Human Point Cloud Registration. Sensors 2024, 24, 6924. https://doi.org/10.3390/s24216924
Gan S, Xu G, Zhuge S, Zhang G, Zhang X. Geodesic-Based Maximal Cliques Search for Non-Rigid Human Point Cloud Registration. Sensors. 2024; 24(21):6924. https://doi.org/10.3390/s24216924
Chicago/Turabian StyleGan, Shuwei, Guangsheng Xu, Sheng Zhuge, Guoyi Zhang, and Xiaohu Zhang. 2024. "Geodesic-Based Maximal Cliques Search for Non-Rigid Human Point Cloud Registration" Sensors 24, no. 21: 6924. https://doi.org/10.3390/s24216924
APA StyleGan, S., Xu, G., Zhuge, S., Zhang, G., & Zhang, X. (2024). Geodesic-Based Maximal Cliques Search for Non-Rigid Human Point Cloud Registration. Sensors, 24(21), 6924. https://doi.org/10.3390/s24216924