A Review of Potential Exoskeletons for the Prevention of Work-Related Musculoskeletal Disorders in Agriculture
Abstract
:1. Introduction
1.1. Aim
1.2. Objectives
- Identify agricultural tasks that cause risks for WMSDs.
- Identify different exoskeletons in various other industries, which are designed to support tasks similar to agricultural tasks with risks of WMSDs in agriculture.
- Identify characteristics of exoskeletons that are suitable for agricultural tasks.
2. Materials and Methods
3. WMSDs and Related Agricultural Tasks
4. Exoskeleton Technology
5. Findings, Challenges, and Considerations
6. Regulatory and Ethical Considerations
7. Future Trends and Supporting Technologies for the Development of Exoskeletons for Agriculture
8. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marcum, J.; Adams, D. Work-related musculoskeletal disorder surveillance using the Washington state workers’ compensation system: Recent declines and patterns by industry, 1999–2013, (in eng). Am. J. Ind. Med. 2017, 60, 457–471. Available online: https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ajim.22708?download=true (accessed on 28 October 2024). [CrossRef]
- Oakman, J.; Clune, S.; Stuckey, R. Musculoskeletal Disorders in Australia. In The Latest Research on Work-Related Musculoskeletal Disorders; Safe Work Australia: Canberra, Australia, 2019. [Google Scholar]
- Stack, T.; Ostrom, L.T.; Wilhelmsen, C.A. Occupational Ergonomics: A Practical Approach; John Wiley & Sons, Incorporated: Hoboken, NJ, USA, 2016. [Google Scholar]
- Violante, F.; Kilbom, A.; Armstrong, T.J. Occupational Ergonomics: Work Related Musculoskeletal Disorders of the Upper Limb and Back; Taylor & Francis Group: London, UK, 2000. [Google Scholar]
- Theurel, J.; Desbrosses, K. Occupational Exoskeletons: Overview of Their Benefits and Limitations in Preventing Work-Related Musculoskeletal Disorders. IISE Trans. Occup. Ergon. Hum. Factors 2019, 7, 264–280. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, X.; Zhang, H.; Shen, C.; Fu, W. Design and Performance Test of a Jujube Pruning Manipulator. Agriculture 2022, 12, 552. [Google Scholar] [CrossRef]
- Varghese, A.; Panicker, V.V. Impact of musculoskeletal disorders on various agricultural operations: A systematic review. Sadhana 2022, 47, 46. [Google Scholar] [CrossRef]
- Satyajit, U.; Roberto, F.; Kim, N.; Divya, S. The Potential for Exoskeletons to Improve Health and Safety in Agriculture—Perspectives from Service Providers. IISE Trans. Occup. Ergon. Hum. Factors 2019, 7, 222–229. [Google Scholar] [CrossRef]
- Ornwipa, T.; Stephan, M.; Divya, S.; Catherine, T. Potential exoskeleton uses for reducing low back muscular activity during farm tasks. Am. J. Ind. Med. 2020, 63, 1017–1028. [Google Scholar] [CrossRef]
- Omoniyi, A.; Trask, C.; Milosavljevic, S.; Thamsuwan, O. Farmers’ perceptions of exoskeleton use on farms: Finding the right tool for the work(er). Int. J. Ind. Ergon. 2020, 80, 103036. [Google Scholar] [CrossRef]
- Kumaraveloo, K.S.; Lunner Kolstrup, C. Agriculture and musculoskeletal disorders in low- and middle-income countries. J. Agromedicine 2018, 23, 227–248. [Google Scholar] [CrossRef]
- Karsh, B.T. Theories of work-related musculoskeletal disorders: Implications for ergonomic interventions. Theor. Issues Ergon. Sci. 2006, 7, 71–88. [Google Scholar] [CrossRef]
- Benos, L.; Tsaopoulos, D.; Bochtis, D. A Review on Ergonomics in Agriculture. Part I: Manual Operations. Appl. Sci. 2020, 10, 1905. [Google Scholar] [CrossRef]
- Barneo-Alcántara, M.; Díaz-Pérez, M.; Gómez-Galán, M.; Carreño-Ortega, Á.; Callejón-Ferre, Á.-J. Musculoskeletal Disorders in Agriculture: A Review from Web of Science Core Collection. Agronomy 2021, 11, 2017. [Google Scholar] [CrossRef]
- Nicholas, Y. Apparatus for Facilitating Walking. U.S. Patent 440,684, 18 November 1890. Available online: https://patents.google.com/patent/US440684 (accessed on 28 October 2024).
- AUXIVO. LiftSuit 2: Support, Anytime, Anywhere. Available online: https://www.auxivo.com/liftsuit (accessed on 14 June 2023).
- Bionic, G. Cray X. Available online: https://germanbionic.com/en/solutions/exoskeletons/crayx/ (accessed on 27 June 2023).
- Eksobionics. eksoEVO. Available online: https://eksobionics.com/ekso-evo/ (accessed on 22 June 2023).
- Ergosanté. HAPO Front (Formerly MS). Available online: https://ergosante.fr/en/exosquelette-leger-hapo-ms/ (accessed on 24 June 2023).
- HEROWEAR. HeroWear Apex Science Overview. Available online: https://herowearexo.com/the-science-studies-behind-the-apex-back-exosuit/ (accessed on 24 June 2023).
- Hilti. EXO-S SHOULDER EXOSKELETON. Available online: https://www.hilti.com/c/CLS_EXOSKELETON_HUMAN_AUGMENTATION/CLS_UPPERBODY_EXOSKELETON/CLS_SUB_UPPERBODY_EXOSKELETON/r14012433 (accessed on 23 June 2023).
- Hyundai. Hyundai Develops Wearable Vest Exoskeleton for Overhead Work. Available online: https://www.hyundai.news/eu/articles/press-releases/hyundai-develops-wearable-vest-exoskeleton-for-overhead-work.html (accessed on 10 June 2023).
- Laevo. Laevo V2. Available online: https://www.laevo-exoskeletons.com/laevo-v2 (accessed on 23 June 2023).
- Skelex. Skelex 360-XFR. Available online: https://www.skelex.com/skelex-360-xfr/ (accessed on 28 June 2023).
- Suitx. Suitx Exoskeletons. Available online: https://www.suitx.com/backX (accessed on 12 July 2023).
- Suitx. LegX by Suitx. Available online: https://www.suitx.com/legx (accessed on 12 July 2023).
- Suitx. ShoulderX by Suitx. Available online: https://www.suitx.com/shoulderx (accessed on 12 July 2023).
- Technologies, L. The AIRFRAME. Available online: https://www.levitatetech.com/airframe-flex/ (accessed on 1 July 2023).
- Harith, H.H.; Mohd, M.F.; Sowat, S.N. A preliminary investigation on upper limb exoskeleton assistance for simulated agricultural tasks. Appl. Ergon. 2021, 95, 103455. [Google Scholar] [CrossRef] [PubMed]
- Bogue, R. Exoskeletons and robotic prosthetics: A review of recent developments. Ind. Robot. 2009, 36, 421–427. [Google Scholar] [CrossRef]
- Yamada, Y.; Arakawa, H.; Watanabe, T.; Fukuyama, S.; Nishihama, R.; Kikutani, I.; Nakamura, T. TasKi: Overhead Work Assistance Device with Passive Gravity Compensation Mechanism. J. Robot. Mechatron. 2020, 32, 138–148. [Google Scholar] [CrossRef]
- Wang, H.-M.; Le, D.K.L.; Lin, W.-C. Evaluation of a Passive Upper-Limb Exoskeleton Applied to Assist Farming Activities in Fruit Orchards. Appl. Sci. 2021, 11, 757. [Google Scholar] [CrossRef]
- Takahashi, K.; Muraoka, R.; Otsuka, K. Technology adoption, impact, and extension in developing countries’ agriculture: A review of the recent literature. Agric. Econ. 2020, 51, 31–45. [Google Scholar] [CrossRef]
- Tiboni, M.; Borboni, A.; Vérité, F.; Bregoli, C.; Amici, C. Sensors and Actuation Technologies in Exoskeletons: A Review. Sensors 2022, 22, 884. [Google Scholar] [CrossRef]
- CCOHS. Work-Related Musculoskeletal Disorders (WMSDs). CCOHS. Available online: https://www.ccohs.ca/oshanswers/diseases/rmirsi.html (accessed on 28 October 2024).
- Osborne, A.; Blake, C.; Fullen, B.M.; Meredith, D.; Phelan, J.; McNamara, J.; Cunningham, C. Prevalence of musculoskeletal disorders among farmers: A systematic review. Am. J. Ind. Med. 2012, 55, 143–158. [Google Scholar] [CrossRef] [PubMed]
- Walker-Bone, K.; Palmer, K.T. Musculoskeletal disorders in farmers and farm workers. Occup. Med. (Oxf.) 2002, 52, 441–450. [Google Scholar] [CrossRef]
- Bispo, L.G.M.; Moreno, C.F.; Silva, G.H.d.O.; Albuquerque, N.L.B.d.; Silva, J.M.N.d. Risk factors for work-related musculoskeletal disorders: A study in the inner regions of Alagoas and Bahia. Saf. Sci. 2022, 153, 105804. [Google Scholar] [CrossRef]
- Mishra, D.; Satapathy, S. Ergonomic risk assessment of farmers in Odisha (India). Int. J. Syst. Assur. Eng. Manag. 2019, 10, 1121–1132. [Google Scholar] [CrossRef]
- Das, B. Gender differences in prevalence of musculoskeletal disorders among the rice farmers of West Bengal, India. Work 2015, 50, 229–240. [Google Scholar] [CrossRef]
- Das, B.; Gangopadhyay, S. Prevalence of Musculoskeletal Disorders and Physiological Stress Among Adult, Male Potato Cultivators of West Bengal, India. Asia-Pac. J. Public Health 2015, 27, NP1669–NP1682. [Google Scholar] [CrossRef] [PubMed]
- Salleh, N.F.M.; Sukadarin, E.H.; Khamis, N.K.; Ramli, R. Pattern of muscle contraction in different postures among Malaysia pineapple plantation workers. IOP Conf. Series Mater. Sci. Eng. 2019, 469, 12088. [Google Scholar] [CrossRef]
- Mohamad Salleh, N.F.; Hani Sukadarin, E. Defining Human Factor and Ergonomic and its related issues in Malaysia Pineapple Plantations. MATEC Web Conf. 2018, 150, 05047. [Google Scholar] [CrossRef]
- Oakman, J.; Chan, S. Risk management: Where should we target strategies to reduce work-related musculoskeletal disorders? Saf. Sci. 2015, 73, 99–105. [Google Scholar] [CrossRef]
- Gangopadhyay, S.; Dev, S. Design and evaluation of ergonomic interventions for the prevention of musculoskeletal disorders in India. Ann. Occup. Environ. Med. 2014, 26, 18. [Google Scholar] [CrossRef]
- Kee, D. Systematic Comparison of OWAS, RULA, and REBA Based on a Literature Review. Int. J. Environ. Res. Public Health 2022, 19, 595. [Google Scholar] [CrossRef]
- Kee, D. Participatory Ergonomic Interventions for Improving Agricultural Work Environment: A Case Study in a Farming Organization of Korea. Appl. Sci. 2022, 12, 2263. [Google Scholar] [CrossRef]
- Akbar, K.A.; Try, P.; Viwattanakulvanid, P.; Kallawicha, K. Work-Related Musculoskeletal Disorders Among Farmers in the Southeast Asia Region: A Systematic Review. Saf. Health Work. 2023, 14, 243–249. [Google Scholar] [CrossRef]
- Das, B.; Gangopadhyay, S. Occupational agricultural injuries among the preadolescent workers of West Bengal, India. Int. J. Adolesc. Med. Health 2018, 33, 20180178. [Google Scholar] [CrossRef]
- Bruno, R.D.C.; Edgar Ramos, V. Risk factors for work-related musculoskeletal disorders: A systematic review of recent longitudinal studies. Am. J. Ind. Med. 2010, 53, 285–323. [Google Scholar] [CrossRef] [PubMed]
- James, M.M.; John, A.M.; Diana, G.T.; Julia, F.; Ira, J.; Ed, W.; Rhonda, S.; Linda, G. Priority risk factors for back injury in agricultural field work: Vineyard ergonomics. J. Agromed. 2002, 8, 39–54. [Google Scholar] [CrossRef]
- Teerasak, P.; Kessarawan, N.; Dariwan, S.; Wongsa, L. Work-Related Musculoskeletal Disorders Among Sugarcane Farmers in North-Eastern Thailand. Asia Pac. J. Public Health 2014, 26, 320–327. [Google Scholar] [CrossRef]
- Osborne, A.; Blake, C.; Meredith, D.; Kinsella, A.; Phelan, J.; McNamara, J.; Cunningham, C. Work-related musculoskeletal disorders among Irish farm operators. Am. J. Ind. Med. 2013, 56, 235–242. [Google Scholar] [CrossRef]
- Sa’diyah, N.; Maksum, M.; Mulyati, G.T. Reducing MSDs and physical workload of manual-harvesting peasan. In The International Conference on Smart and Innovative Agriculture, 1st ed.; IOP Publishing: Bristol, UK, 2021; Volume 686, pp. 1–10. [Google Scholar] [CrossRef]
- Kee, D.; Haslam, R. Prevalence of work-related musculoskeletal disorders in agriculture workers in Korea and preventative interventions. Work 2019, 64, 763–775. [Google Scholar] [CrossRef]
- Kearney, G.D.; Allen, D.L.; Balanay, J.A.G.; Barry, P. A Descriptive Study of Body Pain and Work-Related Musculoskeletal Disorders Among Latino Farmworkers Working on Sweet Potato Farms in Eastern North Carolina. J. Agromed. 2016, 21, 234–243. [Google Scholar] [CrossRef]
- Boriboonsuksri, P.; Taptagaporn, S.; Kaewdok, T. Ergonomic Task Analysis for Prioritization of Work-Related Musculoskeletal Disorders among Mango-Harvesting Farmers. Safety 2022, 8, 6. [Google Scholar] [CrossRef]
- Momeni, Z.; Choobineh, A.; Razeghi, M.; Ghaem, H.; Azadian, F.; Daneshmandi, H. Work-related Musculoskeletal Symptoms among Agricultural Workers: A Cross-sectional Study in Iran. J. Agromed. 2020, 25, 339–348. [Google Scholar] [CrossRef]
- Mohamad Rashid Mohamad, R.; Mohd Amran Mohd, D.; Mohamad Ikbar Abdul, W.; Khairanum, S.; Qarna, M.; Shazia, P. The Evolution of Ergonomics Risk Assessment Method to Prevent Work-Related Musculoskeletal Disorders (WMSDS). Int. J. Online Biomed. Eng. (Ijoe) 2022, 18, 87–97. [Google Scholar] [CrossRef]
- Gangopadhyay, S.; Das, B.; Das, T.; Ghoshal, G.; Ghosh, T.; Ara, T.; Dev, S. Ergonomics study on Musculoskeletal Disorders among female agricultural workers of West Bengal, India. Ergon. SA 2009, 21, 11. [Google Scholar]
- Kee, D. Characteristics of Work-Related Musculoskeletal Disorders in Korea. Int. J. Environ. Res. Public Health 2023, 20, 1024. [Google Scholar] [CrossRef]
- Vimal, V.; Kamble, R.; Pandit, S. Comparative ergonomic assessment of manual harvesting of un-lodged and lodged paddy crops post-tropical cyclone in India. Int. Arch. Occup. Environ. Health 2023, 96, 367–376. [Google Scholar] [CrossRef]
- Chokprasit, P.; Yimthiang, S.; Veerasakul, S. Predictors of Low Back Pain Risk among Rubber Harvesters. Int. J. Environ. Res. Public Health 2022, 19, 10492. [Google Scholar] [CrossRef]
- Colantoni, A.; Cecchini, M.; Monarca, D.; Bedini, R.; Riccioni, S. The risk of musculoskeletal disorders due to repetitive movements of upper limbs for workers employed in hazelnut sorting. J. Agric. Eng. 2013, 44. [Google Scholar] [CrossRef]
- Chan, Y.S.; Teo, Y.X.; Gouwanda, D.; Nurzaman, S.G.; Gopalai, A.A. Simulation of passive exotendon assistive device for agricultural harvesting task. Phys. Eng. Sci. Med. 2023, 46, 1375–1386. [Google Scholar] [CrossRef]
- Anagnostis, A.; Benos, L.; Tsaopoulos, D.; Tagarakis, A.; Tsolakis, N.; Bochtis, D. Human Activity Recognition through Recurrent Neural Networks for Human–Robot Interaction in Agriculture. Appl. Sci. 2021, 11, 2188. [Google Scholar] [CrossRef]
- Houshyar, E.; Kim, I.-J. Understanding musculoskeletal disorders among Iranian apple harvesting laborers: Ergonomic and stop watch time studies. Int. J. Ind. Ergon. 2018, 67, 32–40. [Google Scholar] [CrossRef]
- Castelein, R.B.; Broeze, J.; Kok, M.G.; Axmann, H.B.; Guo, X.; Soethoudt, J.M. Mechanization in rice farming reduces greenhouse gas emissions, food losses, and constitutes a positive business case for smallholder farmers—Results from a controlled experiment in Nigeria. Clean. Eng. Technol. 2022, 8, 100487. [Google Scholar] [CrossRef]
- Roquelaure, Y.; Gabignon, Y.; Gillant, J.C.; Delalieux, P.; Ferrari, C.; Méa, M.; Fanello, S.; Penneau-Fontbonne, D. Transient hand paresthesias in Champagne vineyard workers. Am. J. Ind. Med. 2001, 40, 639–645. [Google Scholar] [CrossRef]
- Sukadarin, E.H.; Md Deros, B.; Mokhtar, M.M. Evaluation of Musculoskeletal Disorders Prevalence during Oil Palm Fresh Fruit Bunches Harvesting Using RULA. Adv. Eng. Forum 2013, 10, 110–115. [Google Scholar] [CrossRef]
- Mohamaddan, S.; Rahman, M.A.; Andrew_Munot, M.; Tanjong, S.J.; Deros, B.M.; Md Dawal, S.Z.; Case, K. Investigation of oil palm harvesting tools design and technique on work-related musculoskeletal disorders of the upper body. Int. J. Ind. Ergon. 2021, 86, 103226. [Google Scholar] [CrossRef]
- Wakula, J.; Landau, K. Ergonomic analysis of grapevine pruning and wine harvesting to define work and hand tools design requirements. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2000, 3, 635–638. [Google Scholar] [CrossRef]
- Thamsuwan, O.; Galvin, K.; Tchong-French, M.; Kim, J.H.; Johnson, P.W. A feasibility study comparing objective and subjective field-based physical exposure measurements during apple harvesting with ladders and mobile platforms. J. Agromed. 2019, 24, 268–278. [Google Scholar] [CrossRef]
- Silverstein, B.A.; Bao, S.S.; Russell, S.; Stewart, K. Water and Coffee: A Systems Approach to Improving Coffee Harvesting Work in Nicaragua. Hum. Factors 2012, 54, 925–939. [Google Scholar] [CrossRef]
- Pinzke, S.; Lavesson, L. Ergonomic conditions in manual harvesting in Swedish outdoor cultivation. Ann. Agric. Environ. Med. 2018, 25, 481–487. [Google Scholar] [CrossRef]
- Ong-Artborirak, P.; Kantow, S.; Seangpraw, K.; Tonchoy, P.; Auttama, N.; Choowanthanapakorn, M.; Boonyathee, S. Ergonomic Risk Factors for Musculoskeletal Disorders among Ethnic Lychee-Longan Harvesting Workers in Northern Thailand. Healthcare 2022, 10, 2446. [Google Scholar] [CrossRef]
- Gallo, R.; Mazzetto, F. Ergonomic analysis for the assessment of the risk of work-related musculoskeletal disorder in forestry operations. J. Agric. Eng. 2013, 44. [Google Scholar] [CrossRef]
- Phairah, K.; Brink, M.; Chirwa, P.; Todd, A. Operator work-related musculoskeletal disorders during forwarding operations in South Africa: An ergonomic assessment. South. For. 2016, 78, 1–9. [Google Scholar] [CrossRef]
- Schettino, S.; Minette, L.J.; Andrade Lima, R.C.; Pedroso Nascimento, G.S.; Caçador, S.S.; Leme Vieira, M.P. Forest harvesting in rural properties: Risks and worsening to the worker’s health under the ergonomics approach. Int. J. Ind. Ergon. 2021, 82, 103087. [Google Scholar] [CrossRef]
- Romero, D.; Stahre, J.; Wuest, T.; Noran, O.; Bernus, P.; Fasth, F.-B.Å.; Gorecky, D. Towards an Operator 4.0 Typology: A Human-Centric Perspective on the Fourth Industrial Revolution Technologies. In Proceedings of the International Conference on Computers & Industrial Engineering (CIE46), Tianjin, China, 10 August 2016; pp. 1–11. [Google Scholar]
- Yang, C.-J.; Zhang, J.-F.; Chen, Y.; Dong, Y.-M.; Zhang, Y. A Review of exoskeleton-type systems and their key technologies. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2008, 222, 1599–1612. [Google Scholar] [CrossRef]
- Zhang, J.; Fiers, P.; Witte, K.A.; Jackson, R.W.; Poggensee, K.L.; Atkeson, C.G.; Collins, S.H. Human-in-the-loop optimization of exoskeleton assistance during walking. Science 2017, 356, 1280–1284. [Google Scholar] [CrossRef]
- Gopura, R.A.R.C.; Kiguchi, K. Mechanical designs of active upper-limb exoskeleton robots: State-of-the-art and design difficulties. In Proceedings of the 2009 IEEE International Conference on Rehabilitation Robotics, Kyoto, Japan, 23–26 June 2009; pp. 178–187. [Google Scholar]
- Fox, S.; Aranko, O.; Heilala, J.; Vahala, P. Exoskeletons. J. Manuf. Technol. Manag. 2020, 31, 1261–1280. [Google Scholar] [CrossRef]
- Danko, A.-D.; Straka, M. Exoskeletons—Robotic suits improving work in logistics. Acta Logist. 2022, 9, 405–410. [Google Scholar] [CrossRef]
- López-Méndez, S.; Martínez-Tejada, H.V.; Valencia-García, M.F. Development of an armored upper limb exoskeleton. Rev. Fac. De Ing. 2020, 109–117. [Google Scholar] [CrossRef]
- Tang, Z.; Zhang, K.; Sun, S.; Gao, Z.; Zhang, L.; Yang, Z. An upper-limb power-assist exoskeleton using proportional myoelectric control. Sensors 2014, 14, 6677–6694. [Google Scholar] [CrossRef]
- Inoue, H.; Noritsugu, T. Development of Upper-Limb Power Assist Machine Using Linkage Mechanism—Drive Mechanism and its Applications. J. Robot. Mechatron. 2018, 30, 214–222. [Google Scholar] [CrossRef]
- Huysamen, K.; de Looze, M.; Bosch, T.; Ortiz, J.; Toxiri, S.; O’Sullivan, L.W. Assessment of an active industrial exoskeleton to aid dynamic lifting and lowering manual handling tasks. Appl. Ergon. 2018, 68, 125–131. [Google Scholar] [CrossRef]
- Nomura, S.; Takahashi, Y.; Sahashi, K.; Murai, S.; Kawai, M.; Taniai, Y.; Naniwa, T. Power Assist Control Based on Human Motion Estimation Using Motion Sensors for Powered Exoskeleton without Binding Legs. Appl. Sci. 2019, 9, 164. [Google Scholar] [CrossRef]
- Thakur, C.; Ogawa, K.; Kurita, Y. Active Passive Nature of Assistive Wearable Gait Augment Suit for Enhanced Mobility. J. Robot. Mechatron. 2018, 30, 717–728. [Google Scholar] [CrossRef]
- Uchiyama, K.; Ito, T.; Tomori, H. Development of Endoskeleton Type Knee Joint Assist Orthosis Using McKibben Type Artificial Muscle. J. Robot. Mechatron. 2022, 34, 390–401. [Google Scholar] [CrossRef]
- Naruoka, Y.; Hiramitsu, N.; Mitsuya, Y. A Study of Power-Assist Technology to Reduce Body Burden During Loading and Unloading Operations by Support of Knee Joint Motion. J. Robot. Mechatron. 2016, 28, 949–957. [Google Scholar] [CrossRef]
- Lockheed Martin, B.B. Human Universal Load Carrier (HULC). Available online: https://bleex.me.berkeley.edu/project/hulc/ (accessed on 1 June 2023).
- Bogue, R. Exoskeletons—A review of industrial applications. Ind. Robot 2018, 45, 585–590. [Google Scholar] [CrossRef]
- Chittar, O.A.; Barve, S.B. Waist-Supportive Exoskeleton: Systems and Materials. Mater. Today Proc. 2022, 57, 840–845. [Google Scholar] [CrossRef]
- Tanaka, H.; Hashimoto, M. Development of a Non-Exoskeletal Structure for a Robotic Suit. Int. J. Autom. Technol. 2014, 8, 201–207. [Google Scholar] [CrossRef]
- Cyberdyne. What is HAL. Available online: https://www.cyberdyne.jp/english/products/HAL/index.html (accessed on 16 June 2023).
- SARCOS. Guardian XO Full-Body Power Exoskeleton. Available online: https://www.sarcos.com/products/guardian-xo-powered-exoskeleton/ (accessed on 15 June 2023).
- Massardi, S.; Pinto-Fernandez, D.; Babič, J.; Dežman, M.; Trošt, A.; Grosu, V.; Lefeber, D.; Rodriguez, C.; Bessler, J.; Schaake, L.; et al. Relevance of hazards in exoskeleton applications: A survey-based enquiry. J. Neuroeng. Rehabil. 2023, 20, 68. [Google Scholar] [CrossRef]
- Kranenborg, S.E.; Greve, C.; Reneman, M.F.; Roossien, C.C. Side-effects and adverse events of a shoulder- and back-support exoskeleton in workers: A systematic review. Appl. Ergon. 2023, 111, 104042. [Google Scholar] [CrossRef]
- Anam, K.; Al-Jumaily, A.A. Active Exoskeleton Control Systems: State of the Art. Procedia Eng. 2012, 41, 988–994. [Google Scholar] [CrossRef]
- Halim, I.; Saptari, A.; Abdullah, Z.; Perumal, P.; Zainal Abidin, M.Z.; Muhammad, M.N.; Abdullah, S. Critical Factors Influencing User Experience on Passive Exoskeleton Application: A Review. Int. J. Integr. Eng. 2022, 14, 89–115. [Google Scholar] [CrossRef]
- Bennett, S.T.; Han, W.; Mahmud, D.; Adamczyk, P.G.; Dai, F.; Wehner, M.; Veeramani, D.; Zhu, Z. Usability and Biomechanical Testing of Passive Exoskeletons for Construction Workers: A Field-Based Pilot Study. Buildings 2023, 13, 822. [Google Scholar] [CrossRef]
- Spada, S.; Ghibaudo, L.; Gilotta, S.; Gastaldi, L.; Cavatorta, M.P. Investigation into the Applicability of a Passive Upper-limb Exoskeleton in Automotive Industry. Procedia Manuf. 2017, 11, 1255–1262. [Google Scholar] [CrossRef]
- van Sluijs, R.M.; Rodriguez-Cianca, D.; Sanz-Morère, C.B.; Massardi, S.; Bartenbach, V.; Torricelli, D. A method to quantify the reduction of back and hip muscle fatigue of lift-support exoskeletons. Wearable Technol. 2023, 4, 2–13. [Google Scholar] [CrossRef]
- van Sluijs, R.M.; Wehrli, M.; Brunner, A.; Lambercy, O. Evaluation of the physiological benefits of a passive back-support exoskeleton during lifting and working in forward leaning postures. J. Biomech. 2023, 149, 111489. [Google Scholar] [CrossRef]
- Wan, C.L.; Ishioka, T.; Kanda, C.; Osawa, K.; Kodama, K.; Tanaka, E. Development of a Three-Layer Fabric Mechanism for a Passive-Type Assistive Suit. J. Robot. Mechatron. 2022, 34, 1348–1360. [Google Scholar] [CrossRef]
- Koopman, A.S.; Kingma, I.; Faber, G.S.; De Looze, M.P.; Van Dieën, J.H. Effects of a passive exoskeleton on the mechanical loading of the low back in static holding tasks. J. Biomech. 2019, 83, 97–103. [Google Scholar] [CrossRef]
- Mohammad Mehdi, A.; Jack, G.; Athulya, A.S.; Chang, S.E.; Alan, T.A. A passive exoskeleton reduces peak and mean EMG during symmetric and asymmetric lifting. J. Electromyogr. Kinesiol. 2019, 47, 25–34. [Google Scholar] [CrossRef]
- Tech, V. Lowe’s and Virginia Tech Develop Exosuit Designed to Help Retail Employees. Available online: https://news.vt.edu/articles/2017/05/eng-lowesexosuit.html (accessed on 8 June 2023).
- Liao, Y.-T.; Ishioka, T.; Mishima, K.; Kanda, C.; Kodama, K.; Tanaka, E. Development and Evaluation of a Close-Fitting Assistive Suit for Back and Arm Muscle–e.z.UP. J. Robot. Mechatron. 2020, 32, 157–172. [Google Scholar] [CrossRef]
- Schiebl, J.; Tröster, M.; Idoudi, W.; Gneiting, E.; Spies, L.; Maufroy, C.; Schneider, U.; Bauernhansl, T. Model-Based Biomechanical Exoskeleton Concept Optimization for a Representative Lifting Task in Logistics. Int. J. Environ. Res. Public Health 2022, 19, 15533. [Google Scholar] [CrossRef]
- Proud, J.K.; Lai, D.T.H.; Mudie, K.L.; Carstairs, G.L.; Billing, D.C.; Garofolini, A.; Begg, R.K. Exoskeleton Application to Military Manual Handling Tasks. Hum. Factors 2022, 64, 527–554. [Google Scholar] [CrossRef]
- Gull, M.A.; Bai, S.; Bak, T. A Review on Design of Upper Limb Exoskeletons. Robotics 2020, 9, 16. [Google Scholar] [CrossRef]
- Dong Jin, H.; KiHyeon, B.; KyuJung, K.; Seungkyu, N.; Dong-hyun, L. A light-weight passive upper arm assistive exoskeleton based on multi-linkage spring-energy dissipation mechanism for overhead tasks. Robot. Auton. Syst. 2019, 122, 103309. [Google Scholar] [CrossRef]
- Grazi, L.; Trigili, E.; Proface, G.; Giovacchini, F.; Crea, S.; Vitiello, N. Design and Experimental Evaluation of a Semi-Passive Upper-Limb Exoskeleton for Workers With Motorized Tuning of Assistance. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 2276–2285. [Google Scholar] [CrossRef] [PubMed]
- Van Engelhoven, L.; Poon, N.; Kazerooni, H.; Rempel, D.; Barr, A.; Harris-Adamson, C. Experimental Evaluation of a Shoulder-Support Exoskeleton for Overhead Work: Influences of Peak Torque Amplitude, Task, and Tool Mass. IISE Trans. Occup. Ergon. Hum. Factors 2019, 7, 250–263. [Google Scholar] [CrossRef]
- Huysamen, K.; Bosch, T.; de Looze, M.; Stadler, K.S.; Graf, E.; O’Sullivan, L.W. Evaluation of a passive exoskeleton for static upper limb activities. Appl. Ergon. 2018, 70, 148–155. [Google Scholar] [CrossRef]
- Ruprecht, A.; Daniel, S.; Konrad, S.S. Design of a passive, iso-elastic upper limb exoskeleton for gravity compensation. ROBOMECH J. 2016, 3, 12. [Google Scholar] [CrossRef]
- Arnoux, B.; Farr, A.; Boccara, V.; Vignais, N. Evaluation of a Passive Upper Limb Exoskeleton in Healthcare Workers during a Surgical Instrument Cleaning Task. Int. J. Environ. Res. Public Health 2023, 20, 3153. [Google Scholar] [CrossRef]
- Liu, H.; Wu, C.; Lin, S.; Chen, Y.; Hu, Y.; Xu, T.; Yuan, W.; Li, Y. Finger Flexion and Extension Driven by a Single Motor in Robotic Glove Design. Adv. Intell. Syst. 2023, 5, 2200274. [Google Scholar] [CrossRef]
- Kazerooni, H.; Tung, W.; Pillai, M. Evaluation of Trunk-Supporting Exoskeleton. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2019, 63, 1080–1083. [Google Scholar] [CrossRef]
- Abhilash, C.R.; Sriraksha, M.; Haq, M.A.; Narahari, N.S. Design and evaluation of exoskeleton for static conditions using Indian anthropometric considerations. J. Eng. Des. Technol. 2022, 20, 1154–1171. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, G.; Han, B.; Wu, L.; Li, H. Design of a Human Lower Limbs Exoskeleton for Biomechanical Energy Harvesting and Assist Walking. Energy Technol. 2021, 9, 2000726. [Google Scholar] [CrossRef]
- Kim, S.; Nussbaum, M.A.; Smets, M.; Ranganathan, S. Effects of an arm-support exoskeleton on perceived work intensity and musculoskeletal discomfort: An 18-month field study in automotive assembly. Am. J. Ind. Med. 2021, 64, 905–914. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 13482:2014. Robots and Robotic Devices—Safety Requirements for Personal Care Robots. Available online: https://www.iso.org/standard/53820.html#:~:text=ISO%2013482%3A2014%20specifies%20requirements,person%20carrier%20robot (accessed on 1 December 2023).
- Zeng, D.; Qu, S.; Ma, T.; Yin, P.; Gao, H.; Zhao, N.; Xia, Y. The Assist Performance Test of Industrial Passive Waist-assistant Exoskeleton on Fatigue during a Repetitive Lifting Task. J. Phys. Conf. Ser. 2021, 1748, 62039. [Google Scholar] [CrossRef]
- Howard, J.; Murashov, V.V.; Lowe, B.D.; Lu, M.-L. Industrial exoskeletons: Need for intervention effectiveness research. Am. J. Ind. Med. 2020, 63, 201–208. [Google Scholar] [CrossRef]
- Pillai, M.V.; Van Engelhoven, L.; Kazerooni, H. Evaluation of a Lower Leg Support Exoskeleton on Floor and Below Hip Height Panel Work. Hum. Factors 2020, 62, 489–500. [Google Scholar] [CrossRef]
- Neubauer, B.; Durfee, W. Preliminary Design and Engineering Evaluation of a Hydraulic Ankle–Foot Orthosis. J. Med. Devices 2016, 10, 041002. [Google Scholar] [CrossRef]
- Antwi-Afari, M.F.; Li, H.; Anwer, S.; Li, D.; Yu, Y.; Mi, H.-Y.; Wuni, I.Y. Assessment of a passive exoskeleton system on spinal biomechanics and subjective responses during manual repetitive handling tasks among construction workers. Saf. Sci. 2021, 142, 105382. [Google Scholar] [CrossRef]
- Kapeller, A.; Felzmann, H.; Fosch-Villaronga, E.; Hughes, A.-M. A Taxonomy of Ethical, Legal and Social Implications of Wearable Robots: An Expert Perspective. Sci. Eng. Ethics 2020, 26, 3229–3247. [Google Scholar] [CrossRef]
- Maurice, P.; Allienne, L.; Malaise, A.; Ivaldi, S. Ethical and Social Considerations for the Introduction of Human-Centered Technologies at Work. In Proceedings of the IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO), Genoa, Italy, 27–29 September 2018; pp. 131–138. [Google Scholar]
- Theurel, J.; Desbrosses, K.; Roux, T.; Savescu, A. Physiological consequences of using an upper limb exoskeleton during manual handling tasks. Appl. Ergon. 2018, 67, 211–217. [Google Scholar] [CrossRef]
- Nnaji, C.; Okpala, I.; Gambatese, J.; Jin, Z. Controlling safety and health challenges intrinsic in exoskeleton use in construction. Saf. Sci. 2023, 157, 105943. [Google Scholar] [CrossRef]
- Kapeller, A.; Felzmann, H.; Fosch Villaronga, E.; Nizamis, K.; Hughes, A.M. Implementing Ethical, Legal, and Societal Considerations in Wearable Robot Design. Appl. Sci. 2021, 11, 6705. [Google Scholar] [CrossRef]
- Cai, M.; Ji, Z.; Li, Q.; Luo, X. Safety evaluation of human–robot collaboration for industrial exoskeleton. Saf. Sci. 2023, 164, 106142. [Google Scholar] [CrossRef]
- Xia, J.; Durfee, W.K. Analysis of Small-Scale Hydraulic Actuation Systems. J. Mech. Des. 2013, 135, 091001. [Google Scholar] [CrossRef]
- Diller, S.; Majidi, C.; Collins, S.H. A lightweight, low-power electroadhesive clutch and spring for exoskeleton actuation. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 682–689. [Google Scholar]
- Aliman, N.; Ramli, R.; Amiri, M.S. Actuators and transmission mechanisms in rehabilitation lower limb exoskeletons: A review. Biomed. Eng./Biomed. Tech. 2024, 69, 327–345. [Google Scholar] [CrossRef]
- Redlarski, G.; Blecharz, K.; Dąbkowski, M.; Pałkowski, A.; Tojza, P.M. Comparative analysis of exoskeletal actuators. Pomiary Autom. Robot. 2012, 16, 133–138. [Google Scholar]
- Deshpande, A.; Hingwe, A.; Bae, J.H.; Naquila, G.; Zhang, H. Novel bio-inspired soft actuators for upper-limb exoskeletons: Design, fabrication and feasibility study. Front. Robot. AI 2024, 11, 1451231. [Google Scholar] [CrossRef]
Agricultural Task | Crop | Probable WMSD Causes | Affected Area of the Body | Reference |
---|---|---|---|---|
Ground Preparation | Rice | Awkward Postures, Heavy Lifting, Repetitive Motion | Neck, Shoulder, Spine | [39,40] |
Potato | Repetitive Motion, Awkward Postures | Back, Upper Limbs | [41] | |
Planting | Pineapple | Prolonged and Repetitive Awkward Postures | Back, Upper Limbs, Lower Limbs | [42,43] |
Rice | Awkward Posture (bend and work), Repetitive Motion | Knees, Back, Neck, Wrist | [39,62] | |
Potato | Awkward Posture (bend and work), Repetitive Motion | Back, Neck, Knees | [41] | |
Weeding/Pesticide or Insecticide Spraying/Fertilization/Pruning | Pineapple | Awkward Postures | Back, Lower Limbs | [42] |
Rice | Awkward Posture (Manual Weeding), | Upper Limbs (Shoulder), Lower Limbs, Back, Wrist, Neck | [39] | |
Repetitive Motion (pesticide and weedicide spraying) | Upper Limbs (Wrist), Back, Lower Limbs | |||
Peach | Climbing, Awkward Posture, Repetitive Motion (Pruning) | Back, Upper Limbs (Wrist, Fingers) | [47] | |
Repetitive Motion (Pesticide Spraying) | Upper Limbs, Back, and Lower Limbs | |||
Grape | Repetitive Motion, Awkward Posture (Pruning) | Upper Limbs (Wrist, Fingers) | [69] | |
Harvesting | Rice | Awkward Posture (bend and work), Repetitive Motion (trunk twisting, cutting by hands), Heavy Load Lifting (moving the harvest around) | Neck, Trunk, Shoulder, Upper and Lower Back, Knees | [39,54,62] |
Rubber | Awkward Posture (squatting, kneeling), Prolonged Standing, Heavy Lifting, Long Duration of Work | Back, Lower Limbs | [64] | |
Mango | Awkward Posture, Repetitive Motion (harvesting with a pole) | Upper Limbs (shoulder), Lower Back, Upper Back | [57] | |
Oil Palm | Repetitive Motion, Awkward Posture (harvesting with a pole) | Upper Limbs, Lower Back, Upper Back | [70,71] | |
Grape | Prolonged Statical Posture, Repetitive Motion | Upper Limbs (shoulder, wrist, fingers) | [72] | |
Apple | Awkward Posture, Repetition | Lumbar, Knee, Shoulder, Neck | [57,73] | |
Coffee | Awkward Posture and Loading Conditions, Prolonged Work Duration | Back, Shoulders, Wrist, Fingers | [74] | |
Cauliflower, Broccoli, Iceberg, Strawberry | Awkward Posture (bend and work), Repetition | Back, Wrist, Fingers | [75] | |
Sugarcane | Repetitive Motion, Heavy and Awkward Lifting | Back, Upper Limbs | [52] | |
Lychee-Longan | Climbing, Reaching, Repetitive Motion, | Upper Limbs (wrist, hand, fingers, shoulder), Neck | [76] | |
Peach | Climbing, Static Awkward Postures | Upper Limbs | [47] | |
Sweet Potatoes | Awkward Posture (bend and work), Prolonged Work Duration, Repetitive Motion | Back, Upper Limbs, Lower Limbs | [56] | |
Pineapple | Awkward Postures (bend and work), Heavy Lifting | Lower Back, Knee | [43] | |
Sorting | Mango | Repetitive Motion | Shoulder, Wrist, Elbow | [57] |
Hazelnut | Repetitive Motion, | Shoulder, Wrist, Elbow | [65] | |
Rice | Awkward Posture (bend forward, knees bent, neck bent), Repetitive Motion (upper limbs) | Back, Knees, Upper Limbs | [39] | |
Peach | Static Awkward Postures (squatting, kneeling or sitting low) | Knees, Lower Back | [47] | |
Forestry Operations | N/A | Repetitive Motion, Heavy Lifting, Awkward Postures | Whole body | [76,77,78] |
Supporting Area of the Body | Specific Area of Support | Name/Made | Power | Industry | Country of Origin | Year | Tasks That Can Be Supported |
---|---|---|---|---|---|---|---|
Upper Body | Upper Limb (Shoulder) | Ekso EVO [20,103]. | Passive (Spring-Based Actuator) | Muti-Purpose (Tested on Construction industry) | USA | 2023 | Overhead Works, Static Shoulder Position Holding Taks. |
Hilti Exo-001 [21,103]. | Passive (Straps) | Muti-Purpose (Tested on Construction industry) | USA | 2023 | Overhead Works, Static Shoulder Position Holding Tasks. | ||
Armored 3DoF Shoulder Exoskeleton [85] | Active (Motors) | In research stage (Military) | Spain | 2020 | Shoulder assistance | ||
Model-based Biomechanical Exoskeleton [112] | Passive (Springs) | In research stage | Germany | 2022 | Heavy Lifting (Up to shoulder height) | ||
PULE (Passive Upper Limb Exoskeleton) [32] | Passive (Gas Spring) | In research stage (Agriculture) | China | 2021 | Arm Lift Task Assistance | ||
TasKi [31] | Passive (Spring) | In research stage (Agriculture) | Japan | 2019 | Overhead Work Assistance (Arm lifting and posture holding tasks) | ||
Skelex 360 [24,114] | Passive (Springs) | Multiple Industries | The Netherlands | 2020 | Overhead Task Assistance, Static Elevation of Arms Assistance | ||
Pole harvesting support exoskeleton [29] | Passive (Springs) | In research stage | Malaysia | 2021 | Upper Limb Motion Assist (in harvesting with a pole) | ||
H-Vex [22,115] | Passive (Springs) | In research stage | Korea | 2019 | Overhead Task Assistance | ||
H-Pulse [116] | Semi Passive (Springs and Active Support Control) | In research stage | Italy | 2020 | Overhead Task Assistance | ||
ShoulderX by Suitx [27,117] | Passive (Springs) | Multiple Industries | USA | 2020 | Overhead Task Assistance | ||
Levitate exoskeleton [28,104] | Passive (Custom spring- and pulley-based actuator systems) | Multiple Industries | USA | 2017 | Static Elevation of Arms Assistance, Repetitive Motion Assistance | ||
Upper Limb (Arm) | Static upper limb activity supporting exoskeleton [118] | Passive (Springs) | In research stage | Switzerland | 2018 | Upper Limb Static Postures Assistance, Overhead Work Assistance | |
Parallelogram type Exoskeleton [119] | Passive (Spring) | In research stage | Switzerland | 2016 | Overhead Work Assistance, Hand Raising Task Assistance (Gravity compensation) | ||
Upper Limbs (Shoulder and Elbow) | Hapo MS [19,120] | Passive (Springs) | Multiple Industries | France | 2023 | Overhead Task Assistance | |
Upper Limb (Elbow) | Power-Assist Exoskeleton [86] | Active (Pneumatic) | In research stage | China | 2014 | Power Assistance | |
Upper Limb | No name, design and lab testing only [87] | Active (Motos and Gears) | In research stage | Japan | 2018 | Lifting, Posture Support | |
Fingers | Double-Acting Soft Actuator (DASA)-Based Robotic Glove [121] | Active (Pneumatic) | In research stage | China/Honk Kong | 2023 | Finger Extension/Flexion | |
Back | Back (Lower and Upper | Hero Wear Apex [20,103]. | Passive (Elastic Straps) | Multipurpose (Tested on Construction industry) | USA | 2023 | Lifting Tasks, Forward Bending Tasks, Push and Pull Taks. |
Lower Back | LiftSuit v2.0 (Auxivo AG) [16,105,106] | Passive (Textile Springs) | In research stage | Switzerland | 2022 | Heavy Lifting, Forward Leaning Posture Assistance | |
Three-layer Fabric Mechanism, Assistive Suit [107] | Passive (Elastic Fabrics) | In research stage | Japan | 2009 | Posture Support | ||
IPWE (Industrial Passive Waist-assistant Exoskeleton) [107] | Passive (Elastic Straps) | In research stage | China | 2020 | Lifting Assistance | ||
Laevo 2.0 [9,23,108] | Passive (Elastic Fabrics) | Multipurpose | The Netherlands | 2019 | Lifting Assistance | ||
VT-Lowe’s Exoskeleton [109,110] | Passive (Carbon Fibre Legs) | In research stage | USA | 2019 | Lifting Assistance | ||
BACKX by Suitx [25,114,122] | Passive (gas springs) | Multipurpose | USA | 2020 | Lifting Assistance | ||
Dynamic Lifting aid Exoskeleton [88] | Active (Motors) | In research stage | Europe (Ireland, The Netherlands, Italy) | 2017 | Lifting Assistance | ||
Back and Upper Limb | Ez-UP [111] | Passive (Deformable and Non-Deformable Belts with Quadrilateral structured Elastic Fabric) | In research stage (Lab Testing) | Japan | 2020 | Lifting, Forward Bent Work Posture Support | |
Lower Body | Lower Limbs | exoskeleton for static conditions using Indian anthropometric considerations [123] | Passive (Metal links) | In research stage | India | 2020 | Static Standing Assistance |
MIT lower-body exoskeleton [30] | Active (Motor) | Military | USA | 2009 | Heavy Lifting, Load Carrying | ||
Lower Limb Exoskeleton [89] | Active (Motors) | In research stage | Japan | 2019 | Walking Assistance | ||
Lowerlimb energy harvesting and transmission exoskeleton (EHTE) [124] | Passive (Flat Spiral Springs) | In research stage | China | 2021 | Walking Assistance | ||
AWGAS (Assistive Wearable Gait Augment Suit) [90] | Active Passive (Pneumatic and Gel Muscles) | In research stage | Japan | 2018 | Gait/Walking Assistance, Postural Assistance, Bent (knee) task assistance | ||
Knees | Endoskeleton Type Knee Joint Assist [91] | Active (Pneumatic) | In research stage | Japan | 2021 | Posture Support (half sitting and crouching) | |
Knee exoskeleton [92] | Active (Motors) | In research stage | Japan | 2016 | Lifting from Crouch Position | ||
Lower Limbs/Back | HULC [30,93] | Active (Hydraulic) | Military | USA | 2009 | Heavy Lifting, Load Carrying (Enhance load capacity) | |
CRAY X [17,94] | Active (Motors) | Manufacturing | Germany | 2019 | Lifting heavy loads | ||
Model A/Model Y [94] | Active (Motors) | Various Industries that handle goods | Japan | 2019 | Heavy Lifting, Posture Support | ||
Lower Back/Top of Lower Limbs | No name, Design only [95] | Active (Motors) | In research stage | India | 2022 | Heavy Lifting | |
Hip, Knee | Non-Exoskeletal Structure [96] | Active (Motors) | In research stage | Japan | 2014 | Walking Assistance, Power Assistance | |
Whole body | - | Raytheon/Sarcos exoskeleton [30] | Active (Motors) | Military | USA | 2009 | Heavy Lifting |
Separate modules for different areas | HAL [30,94,97] | Active (Motors) | Multipurpose | Japan | 2019 | Lifting, Posture Support | |
- | Tokyo University of Agriculture and Technology—Exoskeleton [30] | Active (Motors) | Agriculture (Support for elderly workers) | Japan | 2009 | Posture Support | |
- | Guardian XO and Guardian XO MAX [94,98] | Active (Motors) | Manufacturing | USA | 2019 | Heavy Lifting | |
Augmented | Guardian GT [94] | Active (Motors) | Manufacturing | USA | 2019 | Multiple tasks and can be remotely operated. |
Area of the Human Body (Affected/Supported) | Availability | Exoskeleton | Features/Specifications | Possible Agricultural Activities |
---|---|---|---|---|
Upper Limb (Shoulder) | Commercially Available | Ekso EVO [18,103,125] |
|
|
Hilti Exo-001 [21,103] |
| |||
H-Vex [22,115] |
| |||
Skelex 360 [24,114] |
| |||
ShoulderX by Suitx [27,117] |
| |||
In Research Stage | PULE (Passive Upper Limb Exoskeleton) [32] |
| ||
TasKi [31] |
| |||
Upper Limb (Shoulder and Elbow) | Commercially Available | Hapo MS [19,120] |
| |
Upper Limb | In the Research Stage but developed specifically for harvesting tasks with a pole/stick. | Pole harvesting support exoskeleton [29] |
|
|
Upper Limb/Back | In Research Stage | Ez-UP [111] |
|
|
Back (Lower and Upper) | Commercially Available | Hero Wear Apex [20,103] |
| |
Commercially Available | Laevo 2.0 [9,23,108] |
| ||
Commercially Available | BACKX (IX Back) by Suitx [25,114,122] |
| ||
Commercially Available | LiftSuit v2.0 (Auxivo AG) [16,105,106] |
| ||
In Research Stage | Three-layer Fabric Mechanism, Assistive Suit [107] | - | ||
In Research Stage | IPWE (Industrial Passive Waist-assistant Exoskeleton) [126] | - | ||
In Research Stage | VT-Lowe’s Exoskeleton [109,110] | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arachchige, S.D.; Piyathilaka, L.; Sul, J.-H.; Preethichandra, D.M.G. A Review of Potential Exoskeletons for the Prevention of Work-Related Musculoskeletal Disorders in Agriculture. Sensors 2024, 24, 7026. https://doi.org/10.3390/s24217026
Arachchige SD, Piyathilaka L, Sul J-H, Preethichandra DMG. A Review of Potential Exoskeletons for the Prevention of Work-Related Musculoskeletal Disorders in Agriculture. Sensors. 2024; 24(21):7026. https://doi.org/10.3390/s24217026
Chicago/Turabian StyleArachchige, Sanura Dunu, Lasitha Piyathilaka, Jung-Hoon Sul, and D. M. G. Preethichandra. 2024. "A Review of Potential Exoskeletons for the Prevention of Work-Related Musculoskeletal Disorders in Agriculture" Sensors 24, no. 21: 7026. https://doi.org/10.3390/s24217026
APA StyleArachchige, S. D., Piyathilaka, L., Sul, J.-H., & Preethichandra, D. M. G. (2024). A Review of Potential Exoskeletons for the Prevention of Work-Related Musculoskeletal Disorders in Agriculture. Sensors, 24(21), 7026. https://doi.org/10.3390/s24217026