Steady-State Visual Evoked Potential-Based Brain–Computer Interface System for Enhanced Human Activity Monitoring and Assessment
Abstract
:1. Introduction
2. Related Work
3. Research Methodology
3.1. Common Spatial Pattern Algorithm
3.2. Independent Component Analysis
4. Experimental Setup
4.1. Participants
4.2. EEG Setup
4.3. Experimental Procedure
- Score each stimulus on a five-point scale based on their level of comfort of the experiment, with 1 to 5 corresponding to very uncomfortable, uncomfortable, slightly uncomfortable, comfortable, and very comfortable, respectively.
- Score each stimulus on a five-point scale based on their perception of the effect of the stimulus flicker, with 1 to 5 corresponding to very annoying, annoying, slightly annoying, noticeable, and imperceptible, respectively.
- Score each stimulus on a five-point scale based on their preference of the stimuli, with 1 to 5 corresponding to very annoying, annoying, neutral, like, and very like, respectively.
4.4. Virtual Environment for Assisted Vehicle Maneuvring
5. Data Processing
5.1. Noise Reduction
- Alpha waves: 8–12 Hz;
- Beta 1 waves: 12–20 Hz;
- Beta 2 waves: 20–30 Hz;
- Gamma waves: 30–50 Hz.
5.2. Removal of Artifacts with ICA
5.3. Feature Extraction with CSP
6. Results and Discussion
6.1. Classification of Brain Activity
6.2. Comparison with Similar Methods
Method | Frequency (Hz) | Accuracy (%) |
---|---|---|
Asheri et al. [31] | 12, 15, 20 | 89.37 |
Asheri et al. (FBCSP) [31] | 12, 15, 20 | 95.45 |
Lim and Ku [35] | 20 | 74.60 |
Pan et al. [58] | 8, 10, 12, 15 | 90.75 |
Ban et al. [57] | 8, 10, 12, 15 | 89.62 |
Proposed | 10, 12, 15, 20 | 89.88 |
6.3. Limitations
6.4. Future Work
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wolpaw, J.R.; Birbaumer, N.; Heetderks, W.J.; McFarland, D.J.; Peckham, P.H.; Schalk, G.; Donchin, E.; Quatrano, L.A.; Robinson, C.J.; Vaughan, T.M.; et al. Brain-computer interface technology: A review of the first international meeting. IEEE Trans. Rehabil. Eng. 2000, 8, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Paszkiel, S.; Paszkiel, S. Using BCI and VR technology in neurogaming. In Analysis and Classification of EEG Signals for Brain– Computer Interfaces; Springer: Cham, Switzerland, 2020; pp. 93–99. [Google Scholar]
- Moore, M.M. Real-world applications for brain-computer interface technology. IEEE Trans. Neural Syst. Rehabil. Eng. 2003, 11, 162–165. [Google Scholar] [CrossRef]
- Müller, S.M.T.; Bastos, T.F.; Filho, M.S. Proposal of a SSVEP-BCI to command a robotic wheelchair. J. Control. Autom. Electr. Syst. 2013, 24, 97–105. [Google Scholar] [CrossRef]
- Arpaia, P.; Duraccio, L.; Moccaldi, N.; Rossi, S. Wearable brain–computer interface instrumentation for robot-based rehabilitation by augmented reality. IEEE Trans. Instrum. Meas. 2020, 69, 6362–6371. [Google Scholar] [CrossRef]
- Veena, N.; Anitha, N. A review of non-invasive BCI devices. Int. J. Biomed. Eng. Technol. 2020, 34, 205–233. [Google Scholar]
- Angrisani, L.; Arpaia, P.; Esposito, A.; Moccaldi, N. A wearable brain–computer interface instrument for augmented reality-based inspection in industry 4.0. IEEE Trans. Instrum. Meas. 2019, 69, 1530–1539. [Google Scholar] [CrossRef]
- Rakotomamonjy, A.; Guigue, V. BCI competition III: Dataset II-ensemble of SVMs for BCI P300 speller. IEEE Trans. Biomed. Eng. 2008, 55, 1147–1154. [Google Scholar] [CrossRef]
- Thomas, E.; Dyson, M.; Clerc, M. An analysis of performance evaluation for motor-imagery based BCI. J. Neural Eng. 2013, 10, 031001. [Google Scholar] [CrossRef]
- Liu, B.; Huang, X.; Wang, Y.; Chen, X.; Gao, X. BETA: A large benchmark database toward SSVEP-BCI application. Front. Neurosci. 2020, 14, 544547. [Google Scholar] [CrossRef]
- Yin, E.; Zhou, Z.; Jiang, J.; Yu, Y.; Hu, D. A dynamically optimized SSVEP brain–computer interface (BCI) speller. IEEE Trans. Biomed. Eng. 2014, 62, 1447–1456. [Google Scholar] [CrossRef]
- Lin, B.S.; Wang, H.A.; Huang, Y.K.; Wang, Y.L.; Lin, B.S. Design of SSVEP enhancement-based brain computer interface. IEEE Sens. J. 2020, 21, 14330–14338. [Google Scholar] [CrossRef]
- Vialatte, F.B.; Maurice, M.; Dauwels, J.; Cichocki, A. Steady-state visually evoked potentials: Focus on essential paradigms and future perspectives. Prog. Neurobiol. 2010, 90, 418–438. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, X.; Hong, B.; Jia, C.; Gao, S. Brain-computer interfaces based on visual evoked potentials. IEEE Eng. Med. Biol. Mag. 2008, 27, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, C.S. Human EEG responses to 1–100 Hz flicker: Resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Exp. Brain Res. 2001, 137, 346–353. [Google Scholar] [CrossRef]
- Nakanishi, M.; Wang, Y.; Wang, Y.T.; Mitsukura, Y.; Jung, T.P. A high-speed brain speller using steady-state visual evoked potentials. Int. J. Neural Syst. 2014, 24, 1450019. [Google Scholar] [CrossRef]
- Ha, J.; Park, S.; Im, C.H. Novel hybrid brain-computer interface for virtual reality applications using steady-state visual-evoked potential-based brain–computer interface and electrooculogram-based eye tracking for increased information transfer rate. Front. Neuroinformatics 2022, 16, 758537. [Google Scholar] [CrossRef]
- Yin, G.; Gong, L. Direction control and speed control combined model of motor-imagery based brain-actuated vehicle. In Proceedings of the 2017 36th Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017; pp. 2210–2214. [Google Scholar]
- Acharya, D.; Das, D.K. Design of a fuzzy-based proportional integral derivative controller with optimal membership function scaling for respiratory ventilation system. Biomed. Signal Process. Control 2022, 78, 103938. [Google Scholar] [CrossRef]
- Liu, R.; Wang, Y.X.; Zhang, L. An FDES-based shared control method for asynchronous brain-actuated robot. IEEE Trans. Cybern. 2015, 46, 1452–1462. [Google Scholar] [CrossRef]
- Schmidt, K.W.; Boutalis, Y.S. Fuzzy discrete event systems for multiobjective control: Framework and application to mobile robot navigation. IEEE Trans. Fuzzy Syst. 2012, 20, 910–922. [Google Scholar] [CrossRef]
- Milekovic, T.; Sarma, A.A.; Bacher, D.; Simeral, J.D.; Saab, J.; Pandarinath, C.; Sorice, B.L.; Blabe, C.; Oakley, E.M.; Tringale, K.R.; et al. Stable long-term BCI-enabled communication in ALS and locked-in syndrome using LFP signals. J. Neurophysiol. 2018, 120, 343–360. [Google Scholar] [CrossRef]
- Combaz, A.; Chatelle, C.; Robben, A.; Vanhoof, G.; Goeleven, A.; Thijs, V.; Van Hulle, M.M.; Laureys, S. A comparison of two spelling brain-computer interfaces based on visual P3 and SSVEP in locked-in syndrome. PLoS ONE 2013, 8, e73691. [Google Scholar] [CrossRef]
- Cao, L.; Liu, T.; Hou, L.; Wang, Z.; Fan, C.; Li, J.; Wang, H. A novel real-time multi-phase BCI speller based on sliding control paradigm of SSVEP. IEEE Access 2019, 7, 133974–133981. [Google Scholar] [CrossRef]
- Chen, W.; Chen, S.K.; Liu, Y.H.; Chen, Y.J.; Chen, C.S. An electric wheelchair manipulating system using SSVEP-based BCI system. Biosensors 2022, 12, 772. [Google Scholar] [CrossRef] [PubMed]
- Peters, B.; Bedrick, S.; Dudy, S.; Eddy, B.; Higger, M.; Kinsella, M.; McLaughlin, D.; Memmott, T.; Oken, B.; Quivira, F.; et al. SSVEP BCI and eye tracking use by individuals with late-stage ALS and visual impairments. Front. Hum. Neurosci. 2020, 14, 595890. [Google Scholar] [CrossRef] [PubMed]
- Cao, T.; Wang, X.; Wang, B.; Wong, C.M.; Wan, F.; Mak, P.U.; Mak, P.I.; Vai, M.I. A high rate online SSVEP based brain-computer interface speller. In Proceedings of the 2011 5th International IEEE/EMBS Conference on Neural Engineering, Cancun, Mexico, 27 April–1 May 2011; pp. 465–468. [Google Scholar]
- Shyu, K.K.; Lee, P.L.; Lee, M.H.; Lin, M.H.; Lai, R.J.; Chiu, Y.J. Development of a low-cost FPGA-based SSVEP BCI multimedia control system. IEEE Trans. Biomed. Circuits Syst. 2010, 4, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, R.; Zhang, R.; Li, G.; Zhang, D. A wearable SSVEP-based BCI system for quadcopter control using head-mounted device. IEEE Access 2018, 6, 26789–26798. [Google Scholar] [CrossRef]
- Shyu, K.K.; Lee, P.L.; Liu, Y.J.; Sie, J.J. Dual-frequency steady-state visual evoked potential for brain computer interface. Neurosci. Lett. 2010, 483, 28–31. [Google Scholar] [CrossRef]
- Asheri, B.; Haratian, A.; Mohamadi, M.; Asadi, F.; Yasini, P.; Zarepak, N.; Samiei, D.S.; Menhaj, M.B. Enhancing detection of steady-state visual evoked potentials using frequency and harmonics of that frequency in openvibe. Biomed. Eng. Adv. 2021, 2, 100022. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Gao, X.; Gao, S. A benchmark dataset for SSVEP-based brain–computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 25, 1746–1752. [Google Scholar] [CrossRef]
- Choi, G.Y.; Han, C.H.; Jung, Y.J.; Hwang, H.J. A multi-day and multi-band dataset for a steady-state visual-evoked potential–based brain-computer interface. GigaScience 2019, 8, giz133. [Google Scholar] [CrossRef]
- Renton, A.I.; Painter, D.R.; Mattingley, J.B. Optimising the classification of feature-based attention in frequency-tagged electroencephalography data. Sci. Data 2022, 9, 296. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.; Ku, J. Multiple-command single-frequency SSVEP-based BCI system using flickering action video. J. Neurosci. Methods 2019, 314, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Wen, D.; Fan, Y.; Hsu, S.H.; Xu, J.; Zhou, Y.; Tao, J.; Lan, X.; Li, F. Combining brain–computer interface and virtual reality for rehabilitation in neurological diseases: A narrative review. Ann. Phys. Rehabil. Med. 2021, 64, 101404. [Google Scholar] [CrossRef]
- Zehra, S.R.; Mu, J.; Syiem, B.V.; Burkitt, A.N.; Grayden, D.B. Evaluation of optimal stimuli for ssvep-based augmented reality brain-computer interfaces. IEEE Access 2023, 11, 87305–87315. [Google Scholar] [CrossRef]
- Wang, S.; Mao, Z.; Zeng, C.; Gong, H.; Li, S.; Chen, B. A new method of virtual reality based on Unity3D. In Proceedings of the 2010 18th International Conference on Geoinformatics, Beijing, China, 18–20 June 2010; pp. 1–5. [Google Scholar]
- Haas, J.K. A History of the Unity Game Engine. Interactive Qualifying Project, Worcester Polytechnic Institute: Worcester, MA, USA, 2014; Available online: http://www.daelab.cn/wp-content/uploads/2023/09/A_History_of_the_Unity_Game_Engine.pdf (accessed on 29 October 2024).
- Subasi, A.; Gursoy, M.I. EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst. Appl. 2010, 37, 8659–8666. [Google Scholar] [CrossRef]
- Lotte, F.; Guan, C. Regularizing common spatial patterns to improve BCI designs: Unified theory and new algorithms. IEEE Trans. Biomed. Eng. 2010, 58, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, S.; Gao, X. Common spatial pattern method for channel selelction in motor imagery based brain-computer interface. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 17–18 January 2006; pp. 5392–5395. [Google Scholar]
- Blankertz, B.; Tomioka, R.; Lemm, S.; Kawanabe, M.; Muller, K.R. Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process. Mag. 2007, 25, 41–56. [Google Scholar] [CrossRef]
- Ramoser, H.; Muller-Gerking, J.; Pfurtscheller, G. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabil. Eng. 2000, 8, 441–446. [Google Scholar] [CrossRef]
- Viola, F.C.; Debener, S.; Thorne, J.; Schneider, T.R. Using ICA for the analysis of multi-channel EEG data. InSimultaneous EEG and fMRI: Recording, Analysis, and Application: Recording, Analysis, and Application; Oxford University Press: New York, NY, USA, 2010; pp. 121–133. [Google Scholar]
- Atti, I.; Belardinelli, P.; Ilmoniemi, R.J.; Metsomaa, J. Measuring the accuracy of ICA-based artifact removal from TMS-evoked potentials. Brain Stimul. 2024, 17, 10–18. [Google Scholar] [CrossRef]
- Mammone, N.; La Foresta, F.; Morabito, F.C. Automatic artifact rejection from multichannel scalp EEG by wavelet ICA. IEEE Sens. J. 2011, 12, 533–542. [Google Scholar] [CrossRef]
- Yi, Y.; Billor, N.; Ekstrom, A.; Zheng, J. CW_ICA: An efficient dimensionality determination method for independent component analysis. Sci. Rep. 2024, 14, 143. [Google Scholar] [CrossRef] [PubMed]
- Durka, P.; Kuś, R.; Żygierewicz, J.; Michalska, M.; Milanowski, P.; Łabęcki, M.; Sputek, T.; Laszuk, D.; Duszyk, A.; Kruszyński, M. User-centered design of brain-computer interfaces: OpenBCI. pl and BCI Appliance. Bull. Pol. Acad. Sci. Tech. Sci. 2012, 60, 427–431. [Google Scholar] [CrossRef]
- Homan, R.W.; Herman, J.; Purdy, P. Cerebral location of international 10–20 system electrode placement. Electroencephalogr. Clin. Neurophysiol. 1987, 66, 376–382. [Google Scholar] [CrossRef]
- McFarland, D.J.; McCane, L.M.; Wolpaw, J.R. EEG-based communication and control: Short-term role of feedback. IEEE Trans. Rehabil. Eng. 1998, 6, 7–11. [Google Scholar] [CrossRef]
- Kothe, C.; Shirazi, S.Y.; Stenner, T.; Medine, D.; Boulay, C.; Crivich, M.I.; Mullen, T.; Delorme, A.; Makeig, S. The lab streaming layer for synchronized multimodal recording. bioRxiv 2024. [Google Scholar] [CrossRef]
- Brainard, D.H.; Vision, S. The psychophysics toolbox. Spat. Vis. 1997, 10, 433–436. [Google Scholar] [CrossRef]
- The MathWorks, Inc. Matlab; The MathWorks: Natick, MA, USA, 2012; Volume 9. [Google Scholar]
- Zhang, Y.; Zhou, G.; Jin, J.; Wang, X.; Cichocki, A. Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis. Int. J. Neural Syst. 2014, 24, 1450013. [Google Scholar] [CrossRef] [PubMed]
- Banach, K.; Małecki, M.; Rosół, M.; Broniec, A. Brain–computer interface for electric wheelchair based on alpha waves of EEG signal. Bio-Algorithms Med-Syst. 2021, 17, 165–172. [Google Scholar] [CrossRef]
- Ban, N.; Xie, S.; Qu, C.; Chen, X.; Pan, J. Multifunctional robot based on multimodal brain-machine interface. Biomed. Signal Process. Control 2024, 91, 106063. [Google Scholar] [CrossRef]
- Pan, Y.; Chen, J.; Zhang, Y.; Zhang, Y. An efficient CNN-LSTM network with spectral normalization and label smoothing technologies for SSVEP frequency recognition. J. Neural Eng. 2022, 19, 056014. [Google Scholar] [CrossRef]
- Zhang, R.; Xu, Z.; Zhang, L.; Cao, L.; Hu, Y.; Lu, B.; Shi, L.; Yao, D.; Zhao, X. The effect of stimulus number on the recognition accuracy and information transfer rate of SSVEP–BCI in augmented reality. J. Neural Eng. 2022, 19, 036010. [Google Scholar] [CrossRef] [PubMed]
Accuracy (%) | ||||
---|---|---|---|---|
Action | Target Frequency (Hz) | LDA | MLP | SVM |
Forward | 10 | 89.68 | 90.43 | 90.72 |
Backward | 12 | 87.59 | 90.83 | 90.20 |
Left | 15 | 88.27 | 88.67 | 90.33 |
Right | 20 | 86.06 | 87.82 | 88.27 |
Average | 87.90 | 89.43 | 89.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Shi, X.; De Silva, V.; Dogan, S. Steady-State Visual Evoked Potential-Based Brain–Computer Interface System for Enhanced Human Activity Monitoring and Assessment. Sensors 2024, 24, 7084. https://doi.org/10.3390/s24217084
Chen Y, Shi X, De Silva V, Dogan S. Steady-State Visual Evoked Potential-Based Brain–Computer Interface System for Enhanced Human Activity Monitoring and Assessment. Sensors. 2024; 24(21):7084. https://doi.org/10.3390/s24217084
Chicago/Turabian StyleChen, Yuankun, Xiyu Shi, Varuna De Silva, and Safak Dogan. 2024. "Steady-State Visual Evoked Potential-Based Brain–Computer Interface System for Enhanced Human Activity Monitoring and Assessment" Sensors 24, no. 21: 7084. https://doi.org/10.3390/s24217084
APA StyleChen, Y., Shi, X., De Silva, V., & Dogan, S. (2024). Steady-State Visual Evoked Potential-Based Brain–Computer Interface System for Enhanced Human Activity Monitoring and Assessment. Sensors, 24(21), 7084. https://doi.org/10.3390/s24217084