An Efficient and Stable Registration Framework for Large Point Clouds at Two Different Moments
Abstract
:1. Introduction
2. Methods
2.1. Registration Framework
2.2. Point Cloud Registration Network Based on Keypoints and Descriptors
2.3. Random Sampling
2.4. Random Dilation Cluster Strategy
2.5. Keypoints Processing
2.6. Feature Descriptor
2.7. Loss Function
- Point-to-point loss
- Probabilistic chamfer loss
- Matching loss
3. Experiment
3.1. Experiment Setting
3.2. Dataset
3.3. Evaluation Metrics
3.4. Results
3.4.1. Sampling
3.4.2. Validity Test
3.4.3. Application Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Besl, P.J.; Mckay, N.D. A Method for Registration of 3-D Shapes. IEEE T Pattern Anal. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- Rusu, R.B.; Marton, Z.C.; Blodow, N.; Beetz, M. Learning Informative Point Classes for the Acquisition of Object Model Maps. In Proceedings of the 2008 10th International Conference on Control Automation Robotics & Vision, Kobe, Japan, 12–17 May 2009; Volume 1–4, pp. 643–650. [Google Scholar]
- Rusu, R.B.; Blodow, N.; Beetz, M. Fast Point Feature Histograms (FPFH) for 3D Registration. In Proceedings of the ICRA: 2009 IEEE International Conference on Robotics and Automation, Hanoi, Vietnam, 17–20 December 2008; Volume 1–7, pp. 1848–1853. [Google Scholar]
- Huang, X.; Mei, G.; Zhang, J.; Abbas, R. A comprehensive survey on point cloud registration. arXiv 2021, arXiv:2103.02690. [Google Scholar]
- Qi, C.R.; Su, H.; Kaichun, M.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In Proceedings of the 30th Ieee Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 9 November 2017; pp. 77–85. [Google Scholar]
- Aoki, Y.; Goforth, H.; Srivatsan, R.A.; Lucey, S. PointNetLK: Robust & Efficient Point Cloud Registration using PointNet. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 7156–7165. [Google Scholar]
- Huang, X.; Mei, G.; Zhang, J. Feature-metric registration: A fast semi-supervised approach for robust point cloud registration without correspondences. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11366–11374. [Google Scholar]
- Austin, D. We Recommend a Singular Value Decomposition. Feature Column. 2009. Available online: https://sites.math.washington.edu/~morrow/498_13/ams_on_svd.pdf (accessed on 6 June 2024).
- Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Zeng, A.; Song, S.R.; Niessner, M.; Fisher, M.; Xiao, J.; Funkhouser, T. 3DMatch: Learning Local Geometric Descriptors from RGB-D Reconstructions. In Proceedings of the 30th Ieee Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 199–208. [Google Scholar]
- Deng, H.W.; Birdal, T.; Ilie, S. PPFNet: Global Context Aware Local Features for Robust 3D Point Matching. In Proceedings of the Proc CVPR IEEE, Salt Lake City, UT, USA, 18–23 June 2018; pp. 195–205. [Google Scholar]
- Deng, H.W.; Birdal, T.; Ilic, S. PPF-FoldNet: Unsupervised Learning of Rotation Invariant 3D Local Descriptors. In Proceedings of the Computer Vision—Eccv 2018, Munich, Germany, 8–14 September 2018; pp. 620–638. [Google Scholar]
- Yang, Y.; Feng, C.; Shen, Y.; Tian, D. FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation. In Proceedings of the Proc Cvpr IEEE, CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 206–215. [Google Scholar]
- Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic Graph CNN for Learning on Point Clouds. ACM T Graph. 2019, 38, 146. [Google Scholar] [CrossRef]
- Wang, Y.; Solomon, J.M. Deep Closest Point: Learning Representations for Point Cloud Registration. In Proceedings of the 2019 Ieee/Cvf International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3522–3531. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. arXiv 2017, arXiv:1706.03762. [Google Scholar]
- Wang, Y.; Solomon, J.M. PRNet: Self-Supervised Learning for Partial-to-Partial Registration. arXiv 2019, arXiv:1910.12240. [Google Scholar]
- Fu, K.; Luo, J.; Luo, X.; Liu, S.; Zhang, C.; Wang, M. Robust Point Cloud Registration Framework Based on Deep Graph Matching. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 6183–6195. [Google Scholar]
- Li, J.X.; Lee, G.H. USIP: Unsupervised Stable Interest Point Detection from 3D Point Clouds. In Proceedings of the 2019 IEEE/Cvf International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 361–370. [Google Scholar]
- Wu, Y.; Ding, H.; Gong, M.; Qin, A.K.; Ma, W.; Miao, Q.; Tan, K.C. Evolutionary Multiform Optimization With Two-Stage Bidirectional Knowledge Transfer Strategy for Point Cloud Registration. IEEE Trans. Evol. Comput. 2024, 28, 62–76. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, C.; Feng, Y.; Du, S.; Dai, Q.; Gao, Y. STORM: Structure-Based Overlap Matching for Partial Point Cloud Regis-tration. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 1135–1149. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Y.; Fan, X.; Gong, M.; Miao, Q.; Ma, W. INENet: Inliers Estimation Network With Similarity Learning for Partial Overlapping Registration. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 1413–1426. [Google Scholar] [CrossRef]
- Wu, Y.; Hu, X.; Zhang, Y.; Gong, M.; Ma, W.; Miao, Q. SACF-Net: Skip-Attention Based Correspondence Filtering Network for Point Cloud Registration. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 3585–3595. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Y.; Ma, W.; Gong, M.; Fan, X.; Zhang, M.; Qin, A.K.; Miao, Q. RORNet: Partial-to-Partial Registration Network With Reliable Overlapping Representations. IEEE Trans. Neural Networks Learn. Syst. 2023, 35, 15453–15466. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yao, Q.; Fan, X.; Gong, M.; Ma, W.; Miao, Q. PANet: A Point-Attention Based Multi-Scale Feature Fusion Network for Point Cloud Registration. IEEE Trans. Instrum. Meas. 2023, 2, 2512913. [Google Scholar] [CrossRef]
- Aiger, D.; Mitra, N.J.; Cohen-Or, D. 4-points congruent sets for robust pairwise surface registration. ACM Trans. Graph. 2008, 27, 3. [Google Scholar] [CrossRef]
- Mellado, N.; Aiger, D.; Mitra, N.J. Super 4pcs fast global pointcloud registration via smart indexing. Comput. Graph. Forum 2014, 33, 205–215. [Google Scholar] [CrossRef]
- Mohamad, M.; Ahmed, M.T.; Rappaport, D.; Greenspanm, M. Super generalized 4pcs for 3d registration. In Proceedings of the 2015 Interna-tional Conference on 3D Vision, Lyon, France, 19–22 October 2015; pp. 598–606. [Google Scholar]
- Li, S.; Lu, R.; Liu, J.; Guo, L. Super edge 4-points congruent sets-based point cloud global registration. Remote Sens. 2021, 13, 3210. [Google Scholar] [CrossRef]
- Pingi, P.; Corsini, M.; Ganovelli, F.; Scopigno, R. Fast and simple automatic alignment of large sets of range maps. Comput. Graph. 2015, 47, 78–88. [Google Scholar] [CrossRef]
- Palma, G.; Boubekeur, T.; Ganovelli, F.; Cignoni, P. Scalable non-rigid registration for multi-view stereo data. ISPRS J. Photo-Grammetry Remote Sens. 2018, 142, 328–341. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, G.; Wang, X.; Shu, M. DDRNet: Fast point cloud registration network for large-scale scenes. Isprs J. Photogramm. Remote Sens. 2021, 175, 184–198. [Google Scholar] [CrossRef]
- Lu, F.; Chen, G.; Liu, Y.; Qu, Z.; Knoll, A. RSKDD-Net: Random Sample-based Keypoint Detector and Descriptor. arXiv 2020, arXiv:2010.12394. [Google Scholar]
- Liu, J.; Wang, G.; Liu, Z.; Jiang, C. Regformer: An efficient projection-aware transformer network for large-scale point cloud registration. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–3 October 2023; pp. 8451–8460. [Google Scholar]
- Hu, Q.; Yang, B.; Xie, L.; Rosa, R.; Guo, Y.; Wang, Z.; Trigoni, N.; Markham, A. RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision Pattern Recognition Letters, Long Beach, CA, USA, 16–17 June 2019; pp. 11105–11114. [Google Scholar]
- Hezroni, I.; Drory, A.; Giryes, R.; Avidan, S. DeepBBS: Deep Best Buddies for Point Cloud Registration. In Proceedings of the 2021 International Conference on 3D Vision (3DV), London, UK, 1–3 December 2021; pp. 342–351. [Google Scholar]
- He, Y.; Yang, J.; Hou, X.; Pang, S.; Chen, J. ICP registration with DCA descriptor for 3D point clouds. Opt. Express 2021, 29, 20423–20439. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.mvtec.com/products/halcon (accessed on 6 June 2024).
Input Points Order of Magnitude | Sampling Point | Voxel Sampling | Furthest Point Sampling | Random Sampling |
---|---|---|---|---|
104 | 1024 | 0.74 s | 0.42 s | 0.001 s |
2048 | 0.75 s | 0.84 s | 0.001 s | |
105 | 16,384 | 1.19 s | 6.87 s | 0.002 s |
32,768 | 1.36 s | 13.92 s | 0.002 s | |
106 | 16,384 | 3.95 s | 13.71 s | 0.03 s |
32,768 | 4.15 s | 26.75 s | 0.03 s |
Methods | RMSE(R) | RMSE(t) | MAE(R) | MAE(t) |
---|---|---|---|---|
ICP | 8.7594 | 44.9727 | 7.6044 | 38.9110 |
FPFH + RANSAC | 15.1094 | 77.6722 | 13.1290 | 67.1060 |
DeepBBS | 16.1822 | 42.1172 | 11.2798 | 37.9836 |
RORNet | 11.9933 | 51.3765 | 9.0477 | 44.1126 |
Ours | 0.0277 | 0.1603 | 0.0244 | 0.1276 |
Methods | RMSE(R) | RMSE(t) | MAE(R) | MAE(t) |
---|---|---|---|---|
ICP | 9.8973 | 50.6800 | 8.6202 | 44.0030 |
FPFH + RANSAC | 15.2712 | 76.0779 | 13.2904 | 65.6900 |
Ours | 0.0650 | 0.4129 | 0.0568 | 0.3285 |
Methods | Time/s | Error/mm |
---|---|---|
ICP | 0.472 | 1.196 |
Halcon | 9.349 | 0.395 |
Corse network | 0.467 | 0.592 |
Ours (coarse-to-fine) | 0.652 | 0.404 |
Methods | Time/s | Error/mm |
---|---|---|
ICP | 0.479 | 1.070 |
Halcon | 7.022 | 0.458 |
Corse network | 0.403 | 0.898 |
Ours (coarse-to-fine) | 0.651 | 0.588 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, G.; Li, J.; Xi, J.; Luo, L. An Efficient and Stable Registration Framework for Large Point Clouds at Two Different Moments. Sensors 2024, 24, 7174. https://doi.org/10.3390/s24227174
Zhao G, Li J, Xi J, Luo L. An Efficient and Stable Registration Framework for Large Point Clouds at Two Different Moments. Sensors. 2024; 24(22):7174. https://doi.org/10.3390/s24227174
Chicago/Turabian StyleZhao, Guangxin, Jinlong Li, Jingyi Xi, and Lin Luo. 2024. "An Efficient and Stable Registration Framework for Large Point Clouds at Two Different Moments" Sensors 24, no. 22: 7174. https://doi.org/10.3390/s24227174