Double-Condensing Attention Condenser: Leveraging Attention in Deep Learning to Detect Skin Cancer from Skin Lesion Images
Abstract
:1. Introduction
2. Related Works
2.1. Existing Deep Learning Approaches to Skin Cancer Detection
2.2. Efficient Cancer-Net SCa Architectures
2.3. Double-Condensing Attention Condenser
3. Materials and Methods
3.1. Data Preparation
3.2. Double-Condensing Attention Condenser Architecture Design
3.3. Training Strategy
4. Results
5. Discussion
Limitations and Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AUROC | Area under the ROC curve |
DC-AC | Double-Condensing Attention Condensers |
SIIM–ISIC | Society for Imaging Informatics in Medicine-International Skin Imaging Collaboration |
References
- American Academy of Dermatology Association. Skin Cancer. 2023. Available online: https://www.aad.org/media/stats-skin-cancer (accessed on 16 April 2023).
- National Cancer Institute. Skin Cancer (Including Melanoma)—Patient Version. 2023. Available online: https://www.cancer.gov/types/skin (accessed on 2 July 2023).
- Celebi, M.E.; Wen, Q.; Iyatomi, H.; Shimizu, K.; Zhou, H.; Schaefer, G. A state-of-the-art survey on lesion border detection in dermoscopy images. Dermoscopy Image Anal. 2015, 10, 97–129. [Google Scholar]
- Redelmeier, D.A.; Ferris, L.E.; Tu, J.V.; Hux, J.E.; Schull, M.J. Problems for clinical judgement: Introducing cognitive psychology as one more basic science. Cmaj 2001, 164, 358–360. [Google Scholar] [PubMed]
- Budhiman, A.; Suyanto, S.; Arifianto, A. Melanoma Cancer Classification Using ResNet with Data Augmentation. In Proceedings of the 2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), Yogyakarta, Indonesia, 5–6 December 2019; pp. 17–20. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 84–90. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Chapter 5.2. [Google Scholar]
- Kaplan, J.; McCandlish, S.; Henighan, T.; Brown, T.B.; Chess, B.; Child, R.; Gray, S.; Radford, A.; Wu, J.; Amodei, D. Scaling laws for neural language models. arXiv 2020, arXiv:2001.08361. [Google Scholar]
- Wong, A.; Shafiee, M.J.; Abbasi, S.; Nair, S.; Famouri, M. Faster attention is what you need: A fast self-attention neural network backbone architecture for the edge via double-condensing attention condensers. arXiv 2022, arXiv:2208.06980. [Google Scholar]
- Rotemberg, V.; Kurtansky, N.; Betz-Stablein, B.; Caffery, L.; Chousakos, E.; Codella, N.; Combalia, M.; Dusza, S.; Guitera, P.; Gutman, D.; et al. A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Sci. Data 2021, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- Ha, Q.; Liu, B.; Liu, F. Identifying melanoma images using efficientnet ensemble: Winning solution to the siim-isic melanoma classification challenge. arXiv 2020, arXiv:2010.05351. [Google Scholar]
- Zawacki, A.; Helba, B.; Shih, G.; Weber, J.; Elliott, J.; Combalia, M.; Kurtansky, N.; Codella, N.; Culliton, P.; Rotemberg, V. SIIM-ISIC Melanoma Classification. 2020. Available online: https://kaggle.com/competitions/siim-isic-melanoma-classification (accessed on 14 June 2023).
- Pan, I. SIIM-OSIC Melanoma Classification: 2nd Place. 2023. Available online: https://github.com/i-pan/kaggle-melanoma (accessed on 25 August 2020).
- Lee, J.R.H.; Pavlova, M.; Famouri, M.; Wong, A. Cancer-Net SCa: Tailored deep neural network designs for detection of skin cancer from dermoscopy images. BMC Med. Imaging 2022, 22, 143. [Google Scholar] [CrossRef] [PubMed]
- Mandrekar, J.N. Receiver operating characteristic curve in diagnostic test assessment. J. Thorac. Oncol. 2010, 5, 1315–1316. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.; Famouri, M.; Pavlova, M.; Surana, S. Tinyspeech: Attention condensers for deep speech recognition neural networks on edge devices. arXiv 2020, arXiv:2008.04245. [Google Scholar]
- Mehta, S.; Rastegari, M. MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer. arXiv 2021, arXiv:2110.02178. [Google Scholar]
Network Architecture Design | Param. (M) | FLOPs (G) | Public Score | Private Score |
---|---|---|---|---|
DC-AC | 1.60 | 0.32 | 0.9045 | 0.8865 |
MobileViT-S [18] | 5.60 | 2.03 | 0.8448 | 0.8566 |
Cancer-Net SCa-A [15] | 13.65 | 4.66 | 0.7538 | 0.7327 |
Cancer-Net SCa-B [15] | 0.80 | 0.43 | 0.7697 | 0.7430 |
Cancer-Net SCa-C [15] | 1.19 | 0.40 | 0.7370 | 0.7333 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tai, C.-e.A.; Janes, E.; Czarnecki, C.; Wong, A. Double-Condensing Attention Condenser: Leveraging Attention in Deep Learning to Detect Skin Cancer from Skin Lesion Images. Sensors 2024, 24, 7231. https://doi.org/10.3390/s24227231
Tai C-eA, Janes E, Czarnecki C, Wong A. Double-Condensing Attention Condenser: Leveraging Attention in Deep Learning to Detect Skin Cancer from Skin Lesion Images. Sensors. 2024; 24(22):7231. https://doi.org/10.3390/s24227231
Chicago/Turabian StyleTai, Chi-en Amy, Elizabeth Janes, Chris Czarnecki, and Alexander Wong. 2024. "Double-Condensing Attention Condenser: Leveraging Attention in Deep Learning to Detect Skin Cancer from Skin Lesion Images" Sensors 24, no. 22: 7231. https://doi.org/10.3390/s24227231
APA StyleTai, C.-e. A., Janes, E., Czarnecki, C., & Wong, A. (2024). Double-Condensing Attention Condenser: Leveraging Attention in Deep Learning to Detect Skin Cancer from Skin Lesion Images. Sensors, 24(22), 7231. https://doi.org/10.3390/s24227231