Effect of Climatological Factors on the Horizontal Accuracy of Photogrammetric Products Obtained with UAV
Abstract
:1. Introduction
1.1. Literature Review
1.2. Project Overview
2. Materials and Methods
2.1. Study Area
2.2. Image Acquisition and Processing
3. Results
4. Discussion
5. Conclusions
- Appropriate time range for conducting flights in Peru;
- Influence of luminosity on RMS;
- Influence of solar radiation on RMS;
- Accuracy of orthophotos during the construction process and monitoring.
6. Limitations
7. Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burdziakowski, P. Uav in todays photogrammetry application areas and challenges. Int. Multidiscip. Sci. GeoConf. SGEM 2018, 18, 241–248. [Google Scholar] [CrossRef]
- Kaamin, M.; Fahmizam, M.A.F.; Jefri, A.S.; Sharom, M.H.; Kadir, M.A.A.; Nor, A.H.M.; Supar, K. Progress Monitoring at Construction Sites Using UAV Technology. IOP Conf. Ser. Earth Environ. Sci. 2023, 1140, 012025. [Google Scholar] [CrossRef]
- Del Savio, A.A.; Torres, A.L.; Chicchón, M.; Olivera, M.A.V.; Rojas, S.R.L.; Ibarra, G.T.U.; Ñique, J.L.R.; Arevalo, R.I.M. Integrating a LiDAR Sensor in a UAV Platform to Obtain a Georeferenced Point Cloud. Appl. Sci. 2022, 12, 12838. [Google Scholar] [CrossRef]
- Han, L.; Lee, S.-C.; Bae, W.; Kim, J.; Seo, S. Towards UAVs in Construction: Advancements, Challenges, and Future Directions for Monitoring and Inspection. Drones 2023, 7, 202. [Google Scholar] [CrossRef]
- Del Savio, A.A.; Torres, A.L.; Olivera, M.A.V.; Rojas, S.R.L.; Ibarra, G.T.U.; Neckel, A. Using UAVs and Photogrammetry in Bathymetric Surveys in Shallow Waters. Appl. Sci. 2023, 13, 3420. [Google Scholar] [CrossRef]
- Lucieer, A.; Turner, D.; King, D.H.; Robinson, S.A. Using an Unmanned Aerial Vehicle (UAV) to capture micro-topography of Antarctic moss beds. Int. J. Appl. Earth Obs. Geoinf. 2014, 27, 53–62. [Google Scholar] [CrossRef]
- Краус, K. Photogrammetry; De Gruyter: Vienna, Austria, 2007. [Google Scholar] [CrossRef]
- Omar, H.; Mahdjoubi, L.; Kheder, G. Towards an automated photogrammetry-based approach for monitoring and controlling construction site activities. Comput. Ind. 2018, 98, 172–182. [Google Scholar] [CrossRef]
- Keyvanfar, A.; Shafaghat, A. Emerging Dimensions of Unmanned Aerial Vehicle’s (UAV) 3D Reconstruction Modeling and Photogrammetry in Architecture and Construction Management. ACE Archit. City Environ. 2022, 16. [Google Scholar] [CrossRef]
- Tellidis, I.; Levin, E. Photogrammetric image acquisition with small unmanned aerial systems. In Proceedings of the ASPRS 2014 Annual Conference, Louisville, KY, USA, 23–28 March 2014; Available online: https://www.asprs.org/a/publications/proceedings/Louisville2014/tellidis.pdf (accessed on 10 January 2024).
- Sekrecka, A.; Wierzbicki, D.; Kędzierski, M. Influence of the Sun Position and Platform Orientation on the Quality of Imagery Obtained from Unmanned Aerial Vehicles. Remote Sens. 2020, 12, 1040. [Google Scholar] [CrossRef]
- Bobkowska, K.; Burdziakowski, P.; Szulwic, J.; Zielińska-Dabkowska, K.M. Seven Different Lighting Conditions in Photogrammetric Studies of a 3D Urban Mock-Up. Energies 2021, 14, 8002. [Google Scholar] [CrossRef]
- Wang, B.H.; Wang, D.B.; Ali, Z.A.; Ting, B.; Wang, H. An overview of various kinds of wind effects on unmanned aerial vehicle. Meas. Control 2019, 52, 731–739. [Google Scholar] [CrossRef]
- Visockienė, J.S.; Puzienė, R.; Stanionis, A.; Tumelienė, E. Unmanned Aerial Vehicles for Photogrammetry: Analysis of Orthophoto Images over the Territory of Lithuania. Int. J. Aerosp. Eng. 2016, 2016, 4141037. [Google Scholar] [CrossRef]
- Tuck, L.; Samson, C.; Laliberté, J.; Cunningham, M.F. Magnetic interference mapping of four types of unmanned aircraft systems intended for aeromagnetic surveying. Geosci. Instrum. Methods Data Syst. 2021, 10, 101–112. [Google Scholar] [CrossRef]
- Wierzbicki, D.; Kędzierski, M.; Fryśkowska, A. Assesment of the influence of uav image quality on the orthophoto production. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-1/W4, 1–8. [Google Scholar] [CrossRef]
- Pastucha, E.; Puniach, E.; Gruszczyński, W.; Ćwiąkała, P.; Matwij, W.; Midtiby, H.S. Relative Radiometric Normalisation of Unmanned Aerial Vehicle Photogrammetry-based RGB Orthomosaics. Photogramm. Rec. 2022, 37, 228–247. [Google Scholar] [CrossRef]
- Burdziakowski, P.; Bobkowska, K. UAV Photogrammetry under Poor Lighting Conditions—Accuracy Considerations. Sensors 2021, 21, 3531. [Google Scholar] [CrossRef]
- Contreras-De-Villar, F.; García, F.M.; Muñoz-Pérez, J.J.; Contreras, A.P.; Ruiz-Ortiz, V.; López, P.; García-López, S.; Jigena, B. Beach Leveling Using a Remotely Piloted Aircraft System (RPAS): Problems and Solutions. J. Mar. Sci. Eng. 2020, 9, 19. [Google Scholar] [CrossRef]
- Wang, B.; Ali, Z.A.; Wang, D. Controller for UAV to Oppose Different Kinds of Wind in the Environment. J. Control Sci. Eng. 2020, 2020, 5708970. [Google Scholar] [CrossRef]
- Schiano, F.; Alonso-Mora, J.; Rudin, K.; Beardsley, P.; Siegwart, R.; Sicilianok, B. Towards estimation and correction of wind effects on a quadrotor UAV. In Proceedings of the IMAV 2014: International Micro Air Vehicle Conference and Competition, Delft, The Netherlands, 12–15 August 2014; pp. 134–141. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, B.; Qin, M.; Huang, Q.A. 2-D micromachined thermal wind sensors—A review. IEEE Internet Things J. 2014, 1, 216–232. [Google Scholar] [CrossRef]
- Sushchenko, O.; Yanovsky, F.; Bezkorovainyi, Y.; Melaschenko, O. Influencing UAV electric motors on magnetic heading deviation. In Proceedings of the 2020 IEEE 6th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC), Kyiv, Ukraine, 20–23 October 2020; pp. 166–169. [Google Scholar] [CrossRef]
- Davis Instruments. Vantage Pro 2. Available online: https://www.davisinstruments.com/pages/vantage-pro2 (accessed on 28 March 2024).
- WeatherLink Home. Available online: https://www.weatherlink.com/ (accessed on 28 March 2024).
- UAV Forecast. Available online: https://www.uavforecast.com/ (accessed on 28 March 2024).
- Amprobe. AmpROBE LM-200 LED Light Meter|ampRoBE. Available online: https://www.amprobe.com/product/lm-200-led/ (accessed on 28 March 2024).
- DJI Official. Mavic 2—Product Information—DJI. Available online: https://www.dji.com/global/mavic-2/info#specs (accessed on 28 March 2024).
- ASPRS Approves Edition 2 of the ASPRS Positional Accuracy Standards for Digital Geospatial Data—ASPRS. Available online: https://www.asprs.org/revisions-to-the-asprs-positional-accuracy-standards-for-geospatial-data-2023 (accessed on 28 March 2024).
Building 1 | Building 2 | |
---|---|---|
Height (m) | 29.4 | 24.6 |
Area (m2) | 2360.55 | 3175.46 |
Construction time | January 2020–May 2022 | June 2021–December 2022 |
Flight number | 284 | 164 |
N° of flights | 284 | 164 |
N° of hours of flight | 37 h 52 min | 30 h 4 min |
N° of images | 32,660 | 17,220 |
Amount of data (GB) | 254 | 134 |
UAV Mavic 2 Pro | ||
(SZ DJI Technology Co., Ltd., Shenzhen, China) | ||
Weight/maximum payload recommended | 734 g/743 g | [28] |
Maximum flight time | 25 min | |
Maximum ascent and descent speed | 5 m/s and 3 m/s | |
Satellite positioning system | GPS-GLONASS | |
Camera | 20 MP | |
Battery life | 30 min | |
Transmission distance | 8 km | |
LM-200LED Light Meter | ||
(Fluke Corporation, Everett, WA, USA) | ||
Measurement units | Lux or footcandle | [27] |
Measurement range | 20,000 lux or 20,000 footcandle | |
Battery | 9 V | |
Accuracy | 3% | |
External height/width/depth | 38 mm/63 mm/130 mm | |
Davis Vantaje Pro 2 Weather Station | ||
(Davis Instruments, Hayward, CA, USA) | ||
Transmission | Up to 300 m | [24] |
Connection | Wireless/Cable | |
Power | Solar energy | |
Software | Weatherlink Platform |
Name | Coordinates | ||
---|---|---|---|
X | Y | Z | |
E1 | 285,386.194 | 8,663,385.657 | 216.114 |
E2 | 285,531.14 | 8,663,348.070 | 220.484 |
E3.A | 285,570.68 | 8,663,370.698 | 205.282 |
E4.A | 285,601.43 | 8,663,318.391 | 205.227 |
E5.A | 285,640.666 | 8,663,251.844 | 204.616 |
E6.A | 285,555.881 | 8,663,235.492 | 203.322 |
E7.A | 285,536.061 | 8,663,228.025 | 203.003 |
E9.A | 285,398.652 | 8,663,287.980 | 203.247 |
E10.A | 285,352.246 | 8,663,249.256 | 201.658 |
E11 | 285,395.266 | 8,663,318.264 | 203.603 |
E12.A | 285,349.850 | 8,663,328.041 | 203.77 |
E13.A | 285,472.667 | 8,663,197.472 | 202.266 |
E14.A | 285,513.399 | 8,663,413.573 | 205.093 |
N1.A | 285,236.029 | 8,663,373.713 | 202.25 |
N2.A | 285,250.664 | 8,663,297.459 | 201.989 |
N3.A | 285,460.522 | 8,663,163.438 | 201.235 |
ID | Dates | Start | GSD (cm) | Brightness (lx) | Air Temp. (°C) | Wind Speed (m/s) | Wind Direction | KP Index | Cloud Cover | Solar Radiation (W/m2) |
---|---|---|---|---|---|---|---|---|---|---|
1.1 | 19 November 2021 | 09:06 | 2.34 | 16,500 | 16 | 2 | S | 1 | Obscured | 91 |
1.2 | 24 November 2021 | 09:48 | 2.34 | 31,000 | 17 | 2 | S | 1 | Overcast | 116 |
1.3 | 3 December 2021 | 09:54 | 2.34 | 113,000 | 20 | 2 | WSW | 2 | Clear | 511 |
1.4 | 10 December 2021 | 09:46 | 2.34 | 42,000 | 19 | 1 | WSW | 2 | Broken | 176 |
1.5 | 17 December 2021 | 09:42 | 2.34 | 23,000 | 18 | 2 | SW | 2 | Overcast | 112 |
1.6 | 22 December 2021 | 10:11 | 2.34 | 41,000 | 19 | 3 | SSE | 2 | Broken | 157 |
1.7 | 11 January 2022 | 11:14 | 2.34 | 125,500 | 24 | 4 | SSW | 1 | Clear | 577 |
1.8 | 18 January 2022 | 09:34 | 2.34 | 91,000 | 24 | 2 | WSW | 2 | Clear | 369 |
1.9 | 25 January 2022 | 08:44 | 2.34 | 58,000 | 23 | 2 | WSW | 2 | Scattered | 289 |
1.10 | 8 February 2022 | 09:39 | 2.34 | 91,000 | 23 | 3 | WSW | 1 | Clear | 367 |
1.11 | 15 February 2022 | 09:35 | 2.34 | 82,000 | 23 | 2 | WSW | 1 | Clear | 345 |
1.12 | 22 February 2022 | 08:54 | 2.34 | 24,700 | 22 | 1 | S | 3 | Overcast | 103 |
1.13 | 1 March 2022 | 09:43 | 2.34 | 43,000 | 23 | 2 | S | 3 | Broken | 217 |
1.14 | 15 March 2022 | 07:31 | 2.34 | 98,000 | 23 | 1 | S | 3 | Clear | 64 |
1.15 | 23 March 2022 | 07:52 | 2.34 | 30,300 | 21 | 2 | S | 2 | Overcast | 224 |
1.16 | 6 April 2022 | 09:59 | 2.34 | 85,800 | 24 | 3 | S | 3 | Clear | 435 |
1.17 | 13 April 2022 | 10:09 | 2.34 | 52,700 | 18 | 3 | WSW | 3 | Broken | 273 |
ID | Dates | Start | GSD (cm) | Brightness (lx) | Air Temp. (°C) | Wind Speed (m/s) | Wind Direction | KP Index | Cloud Cover | Solar Radiation (W/m2) |
---|---|---|---|---|---|---|---|---|---|---|
2.1 | 5 November 2021 | 09:11 | 2.34 | 36,000 | 16 | 3 | WSW | 3 | Scattered | 170 |
2.2 | 3 December 2021 | 09:46 | 2.34 | 106,000 | 19 | 3 | WSW | 2 | Clear | 456 |
2.3 | 10 December 2021 | 09:38 | 2.34 | 38,000 | 19 | 1 | S | 2 | Broken | 188 |
2.4 | 17 December 2021 | 09:34 | 2.34 | 24,000 | 18 | 2 | WSW | 2 | Overcast | 104 |
2.5 | 22 December 2021 | 10:03 | 2.34 | 40,000 | 19 | 2 | SSE | 2 | Broken | 189 |
2.6 | 25 January 2022 | 08:55 | 2.34 | 75,000 | 24 | 2 | WSW | 2 | Scattered | 306 |
2.7 | 15 February 2022 | 09:45 | 2.34 | 95,000 | 23 | 2 | WSW | 1 | Scattered | 327 |
2.8 | 22 February 2022 | 09:05 | 2.34 | 25,300 | 22 | 1 | S | 3 | Overcast | 103 |
2.9 | 1 March 2022 | 10:30 | 2.34 | 48,000 | 24 | 1 | WSW | 3 | Broken | 309 |
2.10 | 15 March 2022 | 07:25 | 2.34 | 96,000 | 23 | 1 | S | 3 | Clear | 64 |
2.11 | 31 March 2022 | 16:45 | 2.34 | 36,000 | 21 | 4 | S | 3 | Overcast | 145 |
2.12 | 6 April 2022 | 09:53 | 2.34 | 82,000 | 24 | 3 | S | 3 | Clear | 435 |
2.13 | 13 April 2022 | 10:04 | 2.34 | 62,000 | 18 | 3 | WSW | 3 | Scattered | 273 |
2.14 | 20 April 2022 | 08:02 | 2.34 | 34,500 | 22 | 0 | E | 2 | Overcast | 154 |
2.15 | 27 April 2022 | 07:30 | 2.34 | 8000 | 18 | 1 | N | 2 | Obscured | 29 |
2.16 | 3 May 2022 | 17:17 | 2.34 | 21,500 | 21 | 2 | S | 1 | Overcast | 29 |
2.17 | 10 May 2022 | 14:34 | 2.34 | 25,500 | 18 | 3 | S | 2 | Overcast | 113 |
2.18 | 24 May 2022 | 17:08 | 2.34 | 7100 | 16 | 1 | S | 2 | Obscured | 41 |
2.19 | 31 May 2022 | 17:44 | 2.34 | 700 | 17 | 2 | S | 3 | Obscured | 9 |
2.20 | 14 June 2022 | 16:34 | 2.34 | 15,200 | 17 | 2 | S | 3 | Obscured | 91 |
2.21 | 5 July 2022 | 16:46 | 2.34 | 3600 | 14 | 3 | SSE | 3 | Obscured | 42 |
2.22 | 12 July 2022 | 14:53 | 2.34 | 62,000 | 17 | 3 | W | 4 | Scattered | 216 |
2.23 | 20 July 2022 | 09:04 | 2.34 | 34,500 | 22 | 0 | E | 2 | Overcast | 154 |
2.24 | 26 July 2022 | 14:16 | 2.34 | 71,500 | 17 | 2 | SW | 2 | Scattered | 214 |
2.25 | 2 August 2022 | 16:55 | 2.34 | 13,500 | 15 | 4 | S | 3 | Obscured | 53 |
2.26 | 8 August 2022 | 11:52 | 2.34 | 43,400 | 14 | 3 | S | 3 | Broken | 141 |
2.27 | 15 August 2022 | 11:36 | 2.34 | 93,000 | 15 | 3 | S | 1 | Scattered | 274 |
2.28 | 6 September 2022 | 14:17 | 2.34 | 26,000 | 15 | 2 | WSW | 1 | Overcast | 121 |
2.29 | 12 September 2022 | 12:34 | 2.34 | 31,700 | 15 | 2 | WSW | 1 | Overcast | 84 |
ID | X | Y | Horizontal Accuracy | ID | X | Y | Horizontal Accuracy |
---|---|---|---|---|---|---|---|
1.1 | 0.013 | 0.024 | 0.027 | 2.7 | 0.009 | 0.023 | 0.024 |
1.2 | 0.009 | 0.026 | 0.028 | 2.8 | 0.010 | 0.025 | 0.027 |
1.3 | 0.013 | 0.024 | 0.027 | 2.9 | 0.010 | 0.026 | 0.028 |
1.4 | 0.013 | 0.021 | 0.025 | 2.10 | 0.015 | 0.020 | 0.025 |
1.5 | 0.011 | 0.026 | 0.028 | 2.11 | 0.008 | 0.024 | 0.025 |
1.6 | 0.010 | 0.026 | 0.027 | 2.12 | 0.010 | 0.026 | 0.028 |
1.7 | 0.012 | 0.021 | 0.024 | 2.13 | 0.015 | 0.027 | 0.031 |
1.8 | 0.010 | 0.025 | 0.027 | 2.14 | 0.008 | 0.033 | 0.033 |
1.9 | 0.010 | 0.023 | 0.025 | 2.15 | 0.008 | 0.027 | 0.028 |
1.10 | 0.016 | 0.022 | 0.027 | 2.16 | 0.010 | 0.027 | 0.028 |
1.11 | 0.011 | 0.017 | 0.020 | 2.17 | 0.012 | 0.031 | 0.033 |
1.12 | 0.007 | 0.019 | 0.020 | 2.18 | 0.008 | 0.034 | 0.035 |
1.13 | 0.010 | 0.019 | 0.022 | 2.19 | 0.012 | 0.029 | 0.031 |
1.14 | 0.009 | 0.028 | 0.029 | 2.20 | 0.019 | 0.027 | 0.034 |
1.15 | 0.008 | 0.025 | 0.026 | 2.21 | 0.011 | 0.033 | 0.035 |
1.16 | 0.013 | 0.017 | 0.021 | 2.22 | 0.008 | 0.029 | 0.030 |
1.17 | 0.016 | 0.025 | 0.030 | 2.23 | 0.015 | 0.033 | 0.036 |
2.1 | 0.012 | 0.019 | 0.022 | 2.24 | 0.014 | 0.027 | 0.031 |
2.2 | 0.005 | 0.025 | 0.025 | 2.25 | 0.016 | 0.027 | 0.031 |
2.3 | 0.008 | 0.021 | 0.023 | 2.26 | 0.017 | 0.024 | 0.030 |
2.4 | 0.010 | 0.020 | 0.022 | 2.27 | 0.012 | 0.032 | 0.034 |
2.5 | 0.011 | 0.023 | 0.025 | 2.28 | 0.026 | 0.024 | 0.036 |
2.6 | 0.010 | 0.026 | 0.028 | 2.29 | 0.016 | 0.014 | 0.021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luna Torres, A.; Vergara Olivera, M.; Almeida Del Savio, A.; Gracey Bambarén, G. Effect of Climatological Factors on the Horizontal Accuracy of Photogrammetric Products Obtained with UAV. Sensors 2024, 24, 7236. https://doi.org/10.3390/s24227236
Luna Torres A, Vergara Olivera M, Almeida Del Savio A, Gracey Bambarén G. Effect of Climatological Factors on the Horizontal Accuracy of Photogrammetric Products Obtained with UAV. Sensors. 2024; 24(22):7236. https://doi.org/10.3390/s24227236
Chicago/Turabian StyleLuna Torres, Ana, Mónica Vergara Olivera, Alexandre Almeida Del Savio, and Georgia Gracey Bambarén. 2024. "Effect of Climatological Factors on the Horizontal Accuracy of Photogrammetric Products Obtained with UAV" Sensors 24, no. 22: 7236. https://doi.org/10.3390/s24227236
APA StyleLuna Torres, A., Vergara Olivera, M., Almeida Del Savio, A., & Gracey Bambarén, G. (2024). Effect of Climatological Factors on the Horizontal Accuracy of Photogrammetric Products Obtained with UAV. Sensors, 24(22), 7236. https://doi.org/10.3390/s24227236