Application of Isokinetic Dynamometry Data in Predicting Gait Deviation Index Using Machine Learning in Stroke Patients: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participant Selection
2.2. Experimental Design and Data Collection
2.3. Data Preprocessing and Analysis
2.4. Interpretability Techniques
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feigin, V.L.; Stark, B.; Johnson, C.O.; Roth, G.; Bisignano, C.; Abady, G.G.; Abbasifard, M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abedi, V.; et al. Global, regional, and national burden of stroke and its risk factors, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Francisco, G.E.; Zhou, P. Post-stroke Hemiplegic Gait: New Perspective and Insights. Front. Physiol. 2018, 9, 1021. [Google Scholar] [CrossRef] [PubMed]
- Frenkel-Toledo, S.; Ofir-Geva, S.; Mansano, L.; Granot, O.; Soroker, N. Stroke Lesion Impact on Lower Limb Function. Front. Hum. Neurosci. 2021, 15, 592975. [Google Scholar] [CrossRef] [PubMed]
- Ng, M.M.; Hill, K.D.; Batchelor, F.; Burton, E. Factors Predicting Falls and Mobility Outcomes in Patients With Stroke Returning Home After Rehabilitation Who Are at Risk of Falling. Arch. Phys. Med. Rehabil. 2017, 98, 2433–2441. [Google Scholar] [CrossRef]
- Bergamini, E.; Iosa, M.; Belluscio, V.; Morone, G.; Tramontano, M.; Vannozzi, G. Multi-sensor assessment of dynamic balance during gait in patients with subacute stroke. J. Biomech. 2017, 61, 208–215. [Google Scholar] [CrossRef]
- Nagano, H.; Said, C.M.; James, L.; Sparrow, W.A.; Begg, R. Biomechanical Correlates of Falls Risk in Gait Impaired Stroke Survivors. Front. Physiol. 2022, 13, 833417. [Google Scholar] [CrossRef]
- Barroso, F.O.; Torricelli, D.; Molina-Rueda, F.; Alguacil-Diego, I.M.; Cano-de-la-Cuerda, R.; Santos, C.; Moreno, J.C.; Miangolarra-Page, J.C.; Pons, J.L. Combining muscle synergies and biomechanical analysis to assess gait in stroke patients. J. Biomech. 2017, 63, 98–103. [Google Scholar] [CrossRef]
- Ferrarello, F.; Bianchi, V.A.; Baccini, M.; Rubbieri, G.; Mossello, E.; Cavallini, M.C.; Marchionni, N.; Di Bari, M. Tools for observational gait analysis in patients with stroke: A systematic review. Phys. Ther. 2013, 93, 1673–1685. [Google Scholar] [CrossRef]
- Ishiwatari, M.; Tani, M.; Isayama, R.; Honaga, K.; Hayakawa, M.; Takakura, T.; Tanuma, A.; Kurosu, A.; Hatori, K.; Wada, F.; et al. Prediction of gait independence using the Trunk Impairment Scale in patients with acute stroke. Ther. Adv. Neurol. Disord. 2022, 15, 17562864221140180. [Google Scholar] [CrossRef]
- Schwarz, A.; Al-Haj Husain, A.; Einaudi, L.; Thurlimann, E.; Laderach, J.; Awai Easthope, C.; Held, J.P.O.; Luft, A.R. Reliability and Validity of a Wearable Sensing System and Online Gait Analysis Report in Persons after Stroke. Sensors 2023, 23, 624. [Google Scholar] [CrossRef]
- Mohan, D.M.; Khandoker, A.H.; Wasti, S.A.; Ismail Ibrahim Ismail Alali, S.; Jelinek, H.F.; Khalaf, K. Assessment Methods of Post-stroke Gait: A Scoping Review of Technology-Driven Approaches to Gait Characterization and Analysis. Front. Neurol. 2021, 12, 650024. [Google Scholar] [CrossRef] [PubMed]
- Visscher, R.M.S.; Sansgiri, S.; Freslier, M.; Harlaar, J.; Brunner, R.; Taylor, W.R.; Singh, N.B. Towards validation and standardization of automatic gait event identification algorithms for use in paediatric pathological populations. Gait Posture 2021, 86, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Homes, R.; Clark, D.; Moridzadeh, S.; Tosovic, D.; Van den Hoorn, W.; Tucker, K.; Midwinter, M. Comparison of a Wearable Accelerometer/Gyroscopic, Portable Gait Analysis System (LEGSYS+(TM)) to the Laboratory Standard of Static Motion Capture Camera Analysis. Sensors 2023, 23, 537. [Google Scholar] [CrossRef]
- Yeung, L.F.; Yang, Z.; Cheng, K.C.; Du, D.; Tong, R.K. Effects of camera viewing angles on tracking kinematic gait patterns using Azure Kinect, Kinect v2 and Orbbec Astra Pro v2. Gait Posture 2021, 87, 19–26. [Google Scholar] [CrossRef]
- van der Woude, D.R.; Ruyten, T.; Bartels, B. Reliability of Muscle Strength and Muscle Power Assessments Using Isokinetic Dynamometry in Neuromuscular Diseases: A Systematic Review. Phys. Ther. 2022, 102, pzac099. [Google Scholar] [CrossRef]
- Mainali, S.; Darsie, M.E.; Smetana, K.S. Machine Learning in Action: Stroke Diagnosis and Outcome Prediction. Front. Neurol. 2021, 12, 734345. [Google Scholar] [CrossRef]
- Gandolfi, M.; Boscolo Galazzo, I.; Gasparin Pavan, R.; Cruciani, F.; Vale, N.; Picelli, A.; Storti, S.F.; Smania, N.; Menegaz, G. eXplainable AI Allows Predicting Upper Limb Rehabilitation Outcomes in Sub-Acute Stroke Patients. IEEE J. Biomed. Health Inform. 2023, 27, 263–273. [Google Scholar] [CrossRef]
- Liu, G.; Wu, J.; Dang, C.; Tan, S.; Peng, K.; Guo, Y.; Xing, S.; Xie, C.; Zeng, J.; Tang, X. Machine Learning for Predicting Motor Improvement After Acute Subcortical Infarction Using Baseline Whole Brain Volumes. Neurorehabilit. Neural Repair. 2022, 36, 38–48. [Google Scholar] [CrossRef]
- Hussain, I.; Park, S.J. Prediction of Myoelectric Biomarkers in Post-Stroke Gait. Sensors 2021, 21, 5334. [Google Scholar] [CrossRef]
- Kim, J.K.; Choo, Y.J.; Chang, M.C. Prediction of Motor Function in Stroke Patients Using Machine Learning Algorithm: Development of Practical Models. J. Stroke Cerebrovasc. Dis. 2021, 30, 105856. [Google Scholar] [CrossRef]
- Wang, F.C.; Chen, S.F.; Lin, C.H.; Shih, C.J.; Lin, A.C.; Yuan, W.; Li, Y.C.; Kuo, T.Y. Detection and Classification of Stroke Gaits by Deep Neural Networks Employing Inertial Measurement Units. Sensors 2021, 21, 1864. [Google Scholar] [CrossRef] [PubMed]
- Morbidoni, C.; Cucchiarelli, A.; Agostini, V.; Knaflitz, M.; Fioretti, S.; Di Nardo, F. Machine-Learning-Based Prediction of Gait Events from EMG in Cerebral Palsy Children. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 819–830. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Gu, X.; Yang, G.Z. MCDCD: Multi-Source Unsupervised Domain Adaptation for Abnormal Human Gait Detection. IEEE J. Biomed. Health Inform. 2021, 25, 4017–4028. [Google Scholar] [CrossRef] [PubMed]
- Veerkamp, K.; Waterval, N.F.J.; Geijtenbeek, T.; Carty, C.P.; Lloyd, D.G.; Harlaar, J.; van der Krogt, M.M. Evaluating cost function criteria in predicting healthy gait. J. Biomech. 2021, 123, 110530. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Li, Q.; Wu, H.; Yue, W.; Dai, Q.; Liang, H.; Bian, H.; Xia, X.; Ji, Q.; Shen, Y. Prevalence of Stroke and Vascular Risk Factors in China: A Nationwide Community-based Study. Sci. Rep. 2017, 7, 6402. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, W.; Wang, X. A Robust Linear Regression Feature Selection Method for Data Sets With Unknown Noise. IEEE Trans. Knowl. Data Eng. 2023, 35, 31–44. [Google Scholar] [CrossRef]
- Fang, X.; Yang, N. A Neural Learning Approach for a Data-Driven Nonlinear Error Correction Model. Comput. Intell. Neurosci. 2023, 2023, 5884314. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Yang, W.X.; Wang, F.F.; Pan, Y.Y.; Xie, J.Q.; Lu, M.H.; You, C.G. Comparison of ischemic stroke diagnosis models based on machine learning. Front. Neurol. 2022, 13, 1014346. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. Neural Inf. Process. Syst. 2017, 30, 4765–4774. [Google Scholar]
- Correa, K.P.; Devetak, G.F.; Martello, S.K.; de Almeida, J.C.; Pauleto, A.C.; Manffra, E.F. Reliability and Minimum Detectable Change of the Gait Deviation Index (GDI) in post-stroke patients. Gait Posture 2017, 53, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Joanna, M.; Magdalena, S.; Katarzyna, B.-M.; Daniel, S.; Ewa, L.-D. The Utility of Gait Deviation Index (GDI) and Gait Variability Index (GVI) in Detecting Gait Changes in Spastic Hemiplegic Cerebral Palsy Children Using Ankle-Foot Orthoses (AFO). Children 2020, 7, 149. [Google Scholar] [CrossRef] [PubMed]
- Devetak, G.F.; Martello, S.K.; de Almeida, J.C.; Correa, K.P.; Iucksch, D.D.; Manffra, E.F. Reliability and minimum detectable change of the gait profile score for post-stroke patients. Gait Posture 2016, 49, 382–387. [Google Scholar] [CrossRef]
- Nikolaou, V.; Massaro, S.; Garn, W.; Fakhimi, M.; Stergioulas, L.; Price, D. The cardiovascular phenotype of Chronic Obstructive Pulmonary Disease (COPD): Applying machine learning to the prediction of cardiovascular comorbidities. Respir. Med. 2021, 186, 106528. [Google Scholar] [CrossRef]
- Pickett, K.L.; Suresh, K.; Campbell, K.R.; Davis, S.; Juarez-Colunga, E. Random survival forests for dynamic predictions of a time-to-event outcome using a longitudinal biomarker. BMC Med. Res. Methodol. 2021, 21, 216. [Google Scholar] [CrossRef]
- Speiser, J.L. A random forest method with feature selection for developing medical prediction models with clustered and longitudinal data. J. Biomed. Inform. 2021, 117, 103763. [Google Scholar] [CrossRef]
- Petch, J.; Di, S.; Nelson, W. Opening the Black Box: The Promise and Limitations of Explainable Machine Learning in Cardiology. Can. J. Cardiol. 2022, 38, 204–213. [Google Scholar] [CrossRef]
- Nocera, J.R.; Buckley, T.; Waddell, D.; Okun, M.S.; Hass, C.J. Knee extensor strength, dynamic stability, and functional ambulation: Are they related in Parkinson’s disease? Arch. Phys. Med. Rehabil. 2010, 91, 589–595. [Google Scholar] [CrossRef]
- Farrokhi, S.; O’Connell, M.; Gil, A.B.; Sparto, P.J.; Fitzgerald, G.K. Altered gait characteristics in individuals with knee osteoarthritis and self-reported knee instability. J. Orthop. Sports Phys. Ther. 2015, 45, 351–359. [Google Scholar] [CrossRef]
- Brunner, R.; Frigo, C.A. Control of Tibial Advancement by the Plantar Flexors during the Stance Phase of Gait Depends on Knee Flexion with Respect to the Ground Reaction Force. Bioengineering 2024, 11, 41. [Google Scholar] [CrossRef] [PubMed]
- Sijobert, B.; Azevedo, C.; Pontier, J.; Graf, S.; Fattal, C. A Sensor-Based Multichannel FES System to Control Knee Joint and Reduce Stance Phase Asymmetry in Post-Stroke Gait. Sensors 2021, 21, 2134. [Google Scholar] [CrossRef] [PubMed]
- Geerars, M.; Minnaar-van der Feen, N.; Huisstede, B.M.A. Treatment of knee hyperextension in post-stroke gait. A systematic review. Gait Posture 2022, 91, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Sibley, A.R.; Strike, S.; Moudy, S.C.; Tillin, N.A. The associations between asymmetries in quadriceps strength and gait in individuals with unilateral transtibial amputation. Gait Posture 2021, 90, 267–273. [Google Scholar] [CrossRef]
- Lyle, M.A.; Jensen, J.C.; Hunnicutt, J.L.; Brown, J.J.; Chambliss, C.P.; Newsome, M.A.; Xerogeanes, J.W.; Tsai, L.C. Identification of strength and spatiotemporal gait parameters associated with knee loading during gait in persons after anterior cruciate ligament reconstruction. J. Athl. Train. 2021, 57, 158–164. [Google Scholar] [CrossRef]
- Lyle, M.A.; Jensen, J.C.; Hunnicutt, J.L.; Brown, J.J.; Chambliss, C.P.; Newsome, M.A.; Xerogeanes, J.W.; Tsai, L.C. Associations of Strength and Spatiotemporal Gait Variables with Knee Loading During Gait After Anterior Cruciate Ligament Reconstruction. J. Athl. Train. 2022, 57, 158–164. [Google Scholar] [CrossRef]
- Tanaka, K.; Anan, M.; Tsubouchi, Y.; Iwasaki, T.; Kawano, M.; Itonaga, I.; Ikeda, S.; Kataoka, M.; Suenobu, S.; Tsumura, H. Gait analysis of a patient who underwent complete resection of the patella and quadriceps femoris for soft tissue sarcoma. Eur. J. Phys. Rehabil. Med. 2021, 57, 298–302. [Google Scholar] [CrossRef]
- Neuman, R.M.; Shearin, S.M.; McCain, K.J.; Fey, N.P. Biomechanical analysis of an unpowered hip flexion orthosis on individuals with and without multiple sclerosis. J. Neuroeng. Rehabil. 2021, 18, 104. [Google Scholar] [CrossRef]
- Wang, K.; Tian, J.; Zheng, C.; Yang, H.; Ren, J.; Liu, Y.; Han, Q.; Zhang, Y. Interpretable prediction of 3-year all-cause mortality in patients with heart failure caused by coronary heart disease based on machine learning and SHAP. Comput. Biol. Med. 2021, 137, 104813. [Google Scholar] [CrossRef]
- Khadem, H.; Nemat, H.; Elliott, J.; Benaissa, M. Interpretable Machine Learning for Inpatient COVID-19 Mortality Risk Assessments: Diabetes Mellitus Exclusive Interplay. Sensors 2022, 22, 8757. [Google Scholar] [CrossRef]
- Smole, T.; Zunkovic, B.; Piculin, M.; Kokalj, E.; Robnik-Sikonja, M.; Kukar, M.; Fotiadis, D.I.; Pezoulas, V.C.; Tachos, N.S.; Barlocco, F.; et al. A machine learning-based risk stratification model for ventricular tachycardia and heart failure in hypertrophic cardiomyopathy. Comput. Biol. Med. 2021, 135, 104648. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Han, Y.; Xu, L.; Shi, D.; Liu, R.; Ouyang, J.; Cai, F. The NEAT Equating Via Chaining Random Forests in the Context of Small Sample Sizes: A Machine-Learning Method. Educ. Psychol. Meas. 2023, 83, 984–1006. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; Vinyals, O. Understanding deep learning (still) requires rethinking generalization. Commun. ACM 2021, 64, 107–115. [Google Scholar] [CrossRef]
- Dudek, G. A Comprehensive Study of Random Forest for Short-Term Load Forecasting. Energies 2022, 15, 7547. [Google Scholar] [CrossRef]
- Deng, F.; Huang, J.; Yuan, X.; Cheng, C.; Zhang, L. Performance and efficiency of machine learning algorithms for analyzing rectangular biomedical data. Lab. Investig. 2021, 101, 430–441. [Google Scholar] [CrossRef]
Method | Parameter | Setting Value |
---|---|---|
RFE | Model Type | Linear regression (L1 regularization) |
Number of Selected Features | 20 | |
Number of Iterations | 10 | |
Step Size | 2 | |
Lasso Regression | α (Regularization Strength) | 0.01 |
Max Iterations | 2000 | |
Random State | 21 | |
BP Neural Network model | Hidden Layers | 4 layers, 12 neurons each |
Activation Function | ReLU | |
Optimizer | Adam | |
Learning Rate | 0.0005 | |
Batch Size | 64 | |
Training Epochs | 300 | |
RF | Number of Trees | 150 |
Max Depth | 20 | |
Min Samples Split | 5 | |
Random State | 21 | |
SVR | Kernel Function | RBF |
Regularization Parameter C | 0.5 | |
ε | 0.05 | |
Max Iterations | 2000 |
Characteristic | Study Group (n = 150) | Literature Group | Chi-Square Test Result (p-Value) |
---|---|---|---|
Age Distribution | 0.81 | ||
40–49 years | 37 cases (24.7%) | 20.70% | |
50–59 years | 29 cases (19.3%) | 19.70% | |
60–69 years | 26 cases (17.3%) | 17.50% | |
70–79 years | 8 cases (5.3%) | 9.30% | |
80 years and above | 3 cases (2.0%) | 2.80% | |
Gender Ratio | 0.16 | ||
Male | 85 cases (56.7%) | 45.70% | |
Female | 65 cases (43.3%) | 54.20% | |
Residence Distribution | 0.75 | ||
Urban | 88 cases (58.7%) | 55.40% | |
Rural | 62 cases (41.3%) | 44.50% | |
Hypertension Rate | 55 cases (36.7%) | 35.24% | 0.78 |
Diabetes Rate | 18 cases (12.0%) | 9.55% | 0.38 |
Speed (Deg/s) | Muscle Group | Measurement Side | PT (Nm) | PT/BW (%) | Max Work of Repeated Actions (J) | CV (%) | Average Power (W) | Total Work (J) | Acceleration Time (s) | Deceleration Time (s) | ROM (Deg) | Average Peak Torque (Nm) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
60 | Extensor | Healthy Side | 29.03 (43.15, 72.18) | 38.45 (64.12, 102.57) | 30.42 (51.38, 81.8) | 22.0 (10.9, 32.9) | 17.45 (21.85, 39.3) | 155.15 (190.62, 345.78) | 60.0 (60.0, 120.0) | 60.0 (120.0, 180.0) | 13.55 (99.03, 112.58) | 25.72 (33.12, 58.85) |
60 | Extensor | Affected Side | 21.27 (25.43, 46.7) | 32.75 (34.56, 67.31) | 27.6 (23.6, 51.2) | 42.3 (14.3, 56.6) | 11.92 (12.28, 24.2) | 106.0 (80.9, 186.9) | 100.0 (70.0, 170.0) | 60.0 (130.0, 190.0) | 25.08 (79.38, 104.45) | 14.6 (20.36, 34.95) |
60 | Flexor | Healthy Side | 17.48 (15.07, 32.55) | 24.94 (22.32, 47.26) | 26.9 (8.1, 35.0) | 45.9 (9.95, 55.85) | 9.88 (2.9, 12.78) | 99.8 (24.0, 123.8) | 100.0 (90.0, 190.0) | 170.0 (120.0, 290.0) | 17.3 (94.0, 111.3) | 16.5 (11.11, 27.6) |
60 | Flexor | Affected Side | 8.98 (8.81, 17.79) | 15.39 (12.79, 28.18) | 13.77 (0.4, 14.17) | 49.43 (22.47, 71.9) | 4.91 (0.1, 5.01) | 40.9 (1.6, 42.5) | 80.0 (110.0, 190.0) | 110.0 (140.0, 250.0) | 25.6 (83.1, 108.7) | 7.37 (5.77, 13.14) |
90 | Extensor | Healthy Side | 25.12 (37.92, 63.05) | 33.42 (58.2, 91.62) | 29.83 (46.3, 76.12) | 15.02 (7.48, 22.5) | 21.27 (30.68, 51.95) | 111.2 (206.4, 317.6) | 40.0 (80.0, 120.0) | 40.0 (120.0, 160.0) | 11.25 (101.9, 113.15) | 24.73 (31.95, 56.68) |
90 | Extensor | Affected Side | 12.84 (12.41, 25.24) | 17.16 (19.94, 37.1) | 23.45 (4.45, 27.9) | 26.65 (12.35, 39.0) | 12.35 (2.3, 14.65) | 94.5 (11.82, 106.33) | 107.5 (112.5, 220.0) | 90.0 (130.0, 220.0) | 12.12 (100.5, 112.62) | 9.54 (10.28, 19.81) |
90 | Flexor | Healthy Side | 5.97 (7.9, 13.88) | 8.05 (11.73, 19.78) | 9.18 (0.33, 9.5) | 35.98 (18.42, 54.4) | 6.06 (0.1, 6.16) | 28.77 (0.93, 29.7) | 50.0 (120.0, 170.0) | 70.0 (130.0, 200.0) | 28.1 (81.6, 109.7) | 5.33 (6.37, 11.7) |
90 | Flexor | Affected Side | 24.58 (31.9, 56.48) | 34.37 (49.52, 83.89) | 21.5 (47.4, 68.9) | 12.4 (7.1, 19.5) | 24.05 (35.12, 59.18) | 99.8 (196.8, 296.6) | 50.0 (90.0, 140.0) | 40.0 (130.0, 170.0) | 11.27 (102.2, 113.47) | 17.74 (31.21, 48.95) |
120 | Extensor | Healthy Side | 12.92 (25.27, 38.2) | 18.35 (37.92, 56.27) | 23.95 (23.95, 47.9) | 15.68 (6.83, 22.5) | 21.79 (19.46, 41.26) | 115.03 (92.38, 207.4) | 70.0 (130.0, 200.0) | 60.0 (150.0, 210.0) | 26.05 (83.85, 109.9) | 9.84 (22.72, 32.55) |
120 | Extensor | Affected Side | 10.4 (11.97, 22.38) | 14.12 (17.32, 31.45) | 19.8 (2.3, 22.1) | 24.18 (15.93, 40.1) | 14.25 (1.55, 15.8) | 80.55 (6.45, 87.0) | 67.5 (140.0, 207.5) | 77.5 (140.0, 217.5) | 11.2 (101.6, 112.8) | 9.14 (9.05, 18.19) |
120 | Flexor | Healthy Side | 4.59 (9.42, 14.01) | 7.04 (13.08, 20.12) | 6.83 (0.3, 7.12) | 32.3 (24.6, 56.9) | 4.7 (0.1, 4.8) | 26.83 (1.0, 27.83) | 67.5 (142.5, 210.0) | 80.0 (140.0, 220.0) | 24.5 (85.4, 109.9) | 5.2 (6.3, 11.5) |
120 | Flexor | Affected Side | 29.03 (43.15, 72.18) | 38.45 (64.12, 102.57) | 30.42 (51.38, 81.8) | 22.0 (10.9, 32.9) | 17.45 (21.85, 39.3) | 155.15 (190.62, 345.78) | 60.0 (60.0, 120.0) | 60.0 (120.0, 180.0) | 13.55 (99.03, 112.58) | 25.72 (33.12, 58.85) |
New Feature Name | Original Feature Name |
---|---|
Feature1 | 60deg_ext_healthy_max_work |
Feature2 | 60deg_ext_affected_max_work |
Feature3 | 60deg_flex_healthy_rom |
Feature4 | 60deg_flex_affected_cv |
Feature5 | 60deg_flex_affected_total_work |
Feature6 | 60deg_flex_affected_rom |
Feature7 | 90deg_ext_healthy_max_work |
Feature8 | 90deg_ext_affected_max_work |
Feature9 | 90deg_ext_affected_total_work |
Feature10 | 90deg_ext_affected_dec_time |
Feature11 | 90deg_flex_healthy_max_work |
Feature12 | 120deg_ext_healthy_total_work |
Feature13 | 120deg_ext_healthy_rom |
Feature14 | 120deg_ext_affected_max_work |
Feature15 | 120deg_ext_affected_rom |
Feature16 | 120deg_flex_healthy_max_work |
Feature17 | 120deg_flex_healthy_total_work |
Feature18 | 120deg_flex_healthy_acc_time |
Feature19 | 120deg_flex_healthy_rom |
Feature20 | 120deg_flex_affected_total_work |
Model | MSE | R2 | MAE |
---|---|---|---|
Lasso Regression | 22.29 ± 3.28 | 0.85 ± 0.18 | 3.71 ± 0.96 |
Random Forest | 16.18 ± 1.92 | 0.89 ± 0.06 | 2.99 ± 0.69 |
SVR | 31.58 ± 5.48 | 0.82 ± 0.13 | 7.68 ± 1.70 |
BP Neural Network model | 50.38 ± 9.12 | 0.79 ± 0.21 | 9.59 ± 1.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Qiao, C.; Wang, H.; Li, Y.; Wang, J.; Wang, C.; Wang, Y.; Qie, S. Application of Isokinetic Dynamometry Data in Predicting Gait Deviation Index Using Machine Learning in Stroke Patients: A Cross-Sectional Study. Sensors 2024, 24, 7258. https://doi.org/10.3390/s24227258
Lu X, Qiao C, Wang H, Li Y, Wang J, Wang C, Wang Y, Qie S. Application of Isokinetic Dynamometry Data in Predicting Gait Deviation Index Using Machine Learning in Stroke Patients: A Cross-Sectional Study. Sensors. 2024; 24(22):7258. https://doi.org/10.3390/s24227258
Chicago/Turabian StyleLu, Xiaolei, Chenye Qiao, Hujun Wang, Yingqi Li, Jingxuan Wang, Congxiao Wang, Yingpeng Wang, and Shuyan Qie. 2024. "Application of Isokinetic Dynamometry Data in Predicting Gait Deviation Index Using Machine Learning in Stroke Patients: A Cross-Sectional Study" Sensors 24, no. 22: 7258. https://doi.org/10.3390/s24227258
APA StyleLu, X., Qiao, C., Wang, H., Li, Y., Wang, J., Wang, C., Wang, Y., & Qie, S. (2024). Application of Isokinetic Dynamometry Data in Predicting Gait Deviation Index Using Machine Learning in Stroke Patients: A Cross-Sectional Study. Sensors, 24(22), 7258. https://doi.org/10.3390/s24227258