A Lightweight, Centralized, Collaborative, Truncated Signed Distance Function-Based Dense Simultaneous Localization and Mapping System for Multiple Mobile Vehicles
Abstract
:1. Introduction
- We present a centralized collaborative dense mapping system based on TSDF submaps, alleviating computation and memory pressure on mobile vehicles. Real-world experiments show the applicability and robustness of our system.
- We provide a lightweight and accurate TSDF mapping method to enable real-time and precise 3D reconstruction on resource-constrained mobile vehicles.
- We descriibe a robust and accurate loop closure detection method that rejects loop closure outliers through a combination of keyframe-based and TSDF-based methods.
- We integrate a lightweight submap matching method [9] into a centralized multi-robot pose graph optimization problem to enable real-time global consistency.
2. Related Work
2.1. Dense Single-Robot SLAM
2.2. Dense Multi-Robot SLAM
3. Methods
3.1. System Overview
3.2. System Modules
3.2.1. Local TSDF Mapping
Algorithm 1 Lightweight TSDF Integration |
Require: Sensor origin , pointcloud of current scan p, voxel indexes v Ensure: Updated voxel state
|
3.2.2. Loop Closure Detection
3.2.3. Global Pose Graph Optimization
4. Results
4.1. Dense TSDF Mapping
4.2. Multi-Robot Dense SLAM
4.3. Real-World Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oleynikova, H.; Taylor, Z.; Fehr, M.; Siegwart, R.; Nieto, J. Voxblox: Incremental 3D Euclidean Signed Distance Fields for on-board MAV planning. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 1366–1373. [Google Scholar] [CrossRef]
- Burri, M.; Nikolic, J.; Gohl, P.; Schneider, T.; Rehder, J.; Omari, S.; Achtelik, M.W.; Siegwart, R. The EuRoC micro aerial vehicle datasets. Int. J. Robot. Res. 2016, 35, 1157–1163. [Google Scholar] [CrossRef]
- Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age. IEEE Trans. Robot. 2016, 32, 1309–1332. [Google Scholar] [CrossRef]
- Qin, T.; Li, P.; Shen, S. VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator. IEEE Trans. Robot. 2018, 34, 1004–1020. [Google Scholar] [CrossRef]
- Campos, C.; Elvira, R.; Rodríguez, J.J.G.; M. Montiel, J.M.; D. Tardós, J. ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual–Inertial, and Multimap SLAM. IEEE Trans. Robot. 2021, 37, 1874–1890. [Google Scholar] [CrossRef]
- Newcombe, R.A.; Izadi, S.; Hilliges, O.; Molyneaux, D.; Kim, D.; Davison, A.J.; Kohi, P.; Shotton, J.; Hodges, S.; Fitzgibbon, A. KinectFusion: Real-time dense surface mapping and tracking. In Proceedings of the 2011 10th IEEE International Symposium on Mixed and Augmented Reality, Basel, Switzerland, 26–29 October 2011; pp. 127–136. [Google Scholar] [CrossRef]
- Grinvald, M.; Furrer, F.; Novkovic, T.; Chung, J.J.; Cadena, C.; Siegwart, R.; Nieto, J. Volumetric instance-aware semantic mapping and 3D object discovery. IEEE Robot. Autom. Lett. 2019, 4, 3037–3044. [Google Scholar] [CrossRef]
- Schmid, L.; Pantic, M.; Khanna, R.; Ott, L.; Siegwart, R.; Nieto, J. An Efficient Sampling-Based Method for Online Informative Path Planning in Unknown Environments. IEEE Robot. Autom. Lett. 2020, 5, 1500–1507. [Google Scholar] [CrossRef]
- Reijgwart, V.; Millane, A.; Oleynikova, H.; Siegwart, R.; Cadena, C.; Nieto, J. Voxgraph: Globally Consistent, Volumetric Mapping using Signed Distance Function Submaps. arXiv 2020, arXiv:2004.13154. [Google Scholar] [CrossRef]
- Schmuck, P.; Chli, M. CCM-SLAM: Robust and efficient centralized collaborative monocular simultaneous localization and mapping for robotic teams. J. Field Robot. 2019, 36, 763–781. [Google Scholar] [CrossRef]
- Lajoie, P.Y.; Beltrame, G. Swarm-slam: Sparse decentralized collaborative simultaneous localization and mapping framework for multi-robot systems. IEEE Robot. Autom. Lett. 2023, 9, 475–482. [Google Scholar] [CrossRef]
- Dubois, R.; Eudes, A.; Moras, J.; Frémont, V. Dense Decentralized Multi-robot SLAM based on locally consistent TSDF submaps. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021; pp. 4862–4869. [Google Scholar] [CrossRef]
- Galvez-López, D.; Tardos, J.D. Bags of Binary Words for Fast Place Recognition in Image Sequences. IEEE Trans. Robot. 2012, 28, 1188–1197. [Google Scholar] [CrossRef]
- Besl, P.J.; McKay, N.D. Method for registration of 3-D shapes. In Sensor Fusion IV: Control Paradigms and Data Structures; SPIE: Bellingham, WA, USA, 1992; Volume 1611, pp. 586–606. [Google Scholar]
- Millane, A.; Taylor, Z.; Oleynikova, H.; Nieto, J.; Siegwart, R.; Cadena, C. C-blox: A Scalable and Consistent TSDF-based Dense Mapping Approach. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 995–1002. [Google Scholar] [CrossRef]
- Pan, Y.; Kompis, Y.; Bartolomei, L.; Mascaro, R.; Stachniss, C.; Chli, M. Voxfield: Non-Projective Signed Distance Fields for Online Planning and 3D Reconstruction. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–27 October 2022; pp. 5331–5338. [Google Scholar] [CrossRef]
- Newcombe, R.A.; Lovegrove, S.J.; Davison, A.J. DTAM: Dense tracking and mapping in real-time. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2320–2327. [Google Scholar] [CrossRef]
- Engel, J.; Schöps, T.; Cremers, D. LSD-SLAM: Large-scale direct monocular SLAM. In Proceedings of the ECCV 2014: European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer: Cham, Switzerland, 2014; pp. 834–849. [Google Scholar]
- Whelan, T.; Leutenegger, S.; Salas-Moreno, R.F.; Glocker, B.; Davison, A.J. ElasticFusion: Dense SLAM without a pose graph. In Proceedings of the Robotics: Science and Systems, Rome, Italy, 13–17 July 2015; Volume 11, p. 3. [Google Scholar]
- Mildenhall, B.; Srinivasan, P.P.; Tancik, M.; Barron, J.T.; Ramamoorthi, R.; Ng, R. Nerf: Representing scenes as neural radiance fields for view synthesis. Commun. ACM 2021, 65, 99–106. [Google Scholar] [CrossRef]
- Zhu, Z.; Peng, S.; Larsson, V.; Xu, W.; Bao, H.; Cui, Z.; Oswald, M.R.; Pollefeys, M. NICE-SLAM: Neural Implicit Scalable Encoding for SLAM. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 12776–12786. [Google Scholar] [CrossRef]
- Rosinol, A.; Leonard, J.J.; Carlone, L. Nerf-slam: Real-time dense monocular slam with neural radiance fields. In Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MN, USA, 1–5 October 2023; pp. 3437–3444. [Google Scholar]
- Curless, B.; Levoy, M. A volumetric method for building complex models from range images. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, LA, USA, 4–9 August 1996; pp. 303–312. [Google Scholar]
- Schuster, M.J.; Schmid, K.; Brand, C.; Beetz, M. Distributed stereo vision-based 6D localization and mapping for multi-robot teams. J. Field Robot. 2019, 36, 305–332. [Google Scholar] [CrossRef]
- Tian, Y.; Chang, Y.; Arias, F.H.; Nieto-Granda, C.; How, J.P.; Carlone, L. Kimera-multi: Robust, distributed, dense metric-semantic slam for multi-robot systems. IEEE Trans. Robot. 2022, 38, 2022–2038. [Google Scholar] [CrossRef]
- Rosinol, A.; Abate, M.; Chang, Y.; Carlone, L. Kimera: An open-source library for real-time metric-semantic localization and mapping. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 1689–1696. [Google Scholar]
- Bartolomei, L.; Karrer, M.; Chli, M. Multi-robot coordination with agent-server architecture for autonomous navigation in partially unknown environments. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NA, USA, 25–29 October 2020; pp. 1516–1522. [Google Scholar]
- Zhang, T.; Zhang, L.; Chen, Y.; Zhou, Y. Cvids: A collaborative localization and dense mapping framework for multi-agent based visual-inertial slam. IEEE Trans. Image Process. 2022, 31, 6562–6576. [Google Scholar] [CrossRef] [PubMed]
- Qin, T.; Pan, J.; Cao, S.; Shen, S. A General Optimization-based Framework for Local Odometry Estimation with Multiple Sensors. arXiv 2019, arXiv:1901.03638. [Google Scholar]
- Lorensen, W.E.; Cline, H.E. Marching cubes: A high resolution 3D surface construction algorithm. In SIGGRAPH ’87: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques; Association for Computing Machinery: New York, NY, USA, 1987; pp. 163–169. [Google Scholar] [CrossRef]
- Ericson, C. Real-Time Collision Detection; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Hirschmuller, H. Stereo Processing by Semiglobal Matching and Mutual Information. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 328–341. [Google Scholar] [CrossRef] [PubMed]
- Qin, T.; Cao, S.; Pan, J.; Shen, S. A General Optimization-based Framework for Global Pose Estimation with Multiple Sensors. arXiv 2019, arXiv:1901.03642. [Google Scholar]
- Qin, T.; Shen, S. Online Temporal Calibration for Monocular Visual-Inertial Systems. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 3662–3669. [Google Scholar]
- Jeon, J.; Jung, S.; Lee, E.; Choi, D.; Myung, H. Run Your Visual-Inertial Odometry on NVIDIA Jetson: Benchmark Tests on a Micro Aerial Vehicle. IEEE Robot. Autom. Lett. 2021, 6, 5332–5339. [Google Scholar] [CrossRef]
Seq. | ATE (m) | VINS-Mono | VINS-Fusion | Ours |
---|---|---|---|---|
MH_01 & MH_02 | RMSE | 0.221 | 0.247 | 0.135 |
Median | 0.181 | 0.260 | 0.125 | |
RMSE | 0.178 | 0.185 | 0.117 | |
Median | 0.102 | 0.154 | 0.106 | |
MH_01 & MH_03 | RMSE | 0.221 | 0.247 | 0.104 |
Median | 0.181 | 0.260 | 0.094 | |
RMSE | 0.228 | 0.298 | 0.132 | |
Median | 0.176 | 0.231 | 0.095 | |
MH_02 & MH_03 | RMSE | 0.178 | 0.185 | 0.097 |
Median | 0.102 | 0.154 | 0.063 | |
RMSE | 0.227 | 0.298 | 0.121 | |
Median | 0.176 | 0.239 | 0.081 | |
V1_01 & V1_02 | RMSE | 0.077 | 0.117 | 0.073 |
Median | 0.058 | 0.109 | 0.069 | |
RMSE | 0.090 | 0.102 | 0.079 | |
Median | 0.087 | 0.087 | 0.073 | |
V2_01 & V2_02 | RMSE | 0.094 | 0.117 | 0.084 |
Median | 0.070 | 0.069 | 0.079 | |
RMSE | 0.118 | 0.119 | 0.089 | |
Median | 0.077 | 0.092 | 0.072 |
Platform | Type | Characteristics | Sensors |
---|---|---|---|
Agent 1 | Jetson Xavier NX | 1.4 GHz × 6 and 8 GB RAM | ZED 2 Camera (Stereolabs, San Francisco, CA, USA) and WitMotion HWT605 IMU (WitMotion Shenzhen Co., Ltd., Shenzhen, China) |
Agent 2 | Jetson Xavier NX | 1.4 GHz × 6 and 8 GB RAM | ZED 2 Camera (Stereolabs, San Francisco, CA, USA) and WitMotion HWT605 IMU (WitMotion Shenzhen Co., Ltd., Shenzhen, China) |
Server | HP Omen 9 | 5.8 GHz × 24 and 32 GB RAM | - |
Router | Mi AX6000 | - | - |
TSDF Mapping Mean Update Time | TSDF Map Onboard RAM Usage | Mean Keyframe Bandwidth | TSDF Submaps Mean Bandwidth |
---|---|---|---|
73.95 ms | 3.40% | 49.25 KB/s | 253.14 KB/s |
TSDF Mapping Mean Update Time | TSDF Map Onboard RAM Usage | Mean Keyframe Bandwidth | TSDF Submaps Mean Bandwidth |
---|---|---|---|
73.86 ms | 3.37% | 49.23 KB/s | 253.09 KB/s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Que, H.; Gao, H.; Shan, W.; Yang, X.; Zhao, R. A Lightweight, Centralized, Collaborative, Truncated Signed Distance Function-Based Dense Simultaneous Localization and Mapping System for Multiple Mobile Vehicles. Sensors 2024, 24, 7297. https://doi.org/10.3390/s24227297
Que H, Gao H, Shan W, Yang X, Zhao R. A Lightweight, Centralized, Collaborative, Truncated Signed Distance Function-Based Dense Simultaneous Localization and Mapping System for Multiple Mobile Vehicles. Sensors. 2024; 24(22):7297. https://doi.org/10.3390/s24227297
Chicago/Turabian StyleQue, Haohua, Haojia Gao, Weihao Shan, Xinghua Yang, and Rong Zhao. 2024. "A Lightweight, Centralized, Collaborative, Truncated Signed Distance Function-Based Dense Simultaneous Localization and Mapping System for Multiple Mobile Vehicles" Sensors 24, no. 22: 7297. https://doi.org/10.3390/s24227297
APA StyleQue, H., Gao, H., Shan, W., Yang, X., & Zhao, R. (2024). A Lightweight, Centralized, Collaborative, Truncated Signed Distance Function-Based Dense Simultaneous Localization and Mapping System for Multiple Mobile Vehicles. Sensors, 24(22), 7297. https://doi.org/10.3390/s24227297