Mobile Accelerometer Applications in Core Muscle Rehabilitation and Pre-Operative Assessment
Abstract
:1. Introduction
2. Methods
- (a)
- Activation of sensors in a smartphone and specification of their parameters in the mobile Matlab environment.
- (b)
- Data acquisition from the right and left part of the body with the selected sampling frequency.
- (c)
- Export of signals through communication links into the remote drive.
- (d)
- Evaluation of accelerometric signals, estimation of the symmetry coefficient of left/right parts of the body, and classification of motion features.
2.1. Data Acquisition
2.2. Signal Processing
- Sensitivity (True positive rate, recall) defined as the proportion of actual positives that are correctly identified by relation:
- Specificity (True negative rate) defined as the proportion of actual negatives that are correctly identified by relation:
- Accuracy defined as a probability of global correct classification:
3. Results
- Animating motion exercises for training and data acquisition by a mobile phone.
- Selecting accelerometric signals recorded by the smartphone of a chosen individual and stored in the specified datastore.
- Trimming inaccurate data at the beginning and end of each record.
- Evaluating spectral components recorded on the right and left sides of the body using the discrete Fourier transform, with results displayed in Figure 3b.
- Estimating the percentage power of signals in selected frequency ranges and specified subwindows.
- Visualizing motion features associated with the left and right sides of the body.
- Evaluating the proposed symmetry criterion coefficient for the selected rehabilitation exercise.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gomaa, W.; Khamis, M. A perspective on human activity recognition from inertial motion data. Neural Comput. Appl. 2023, 35, 20463–20568. [Google Scholar] [CrossRef]
- Xu, Z.; Wu, Z.; Wang, L.; Ma, Z.; Deng, J.; Sha, H.; Wang, H. Research on Monitoring Assistive Devices for Rehabilitation of Movement Disorders through Multi-Sensor Analysis Combined with Deep Learning. Sensors 2024, 24, 4273. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Wu, Z. The Application of Wearable Sensors and Machine Learning Algorithms in Rehabilitation Training: A Systematic Review. Sensors 2023, 23, 7667. [Google Scholar] [CrossRef] [PubMed]
- Carnevale, A.; Longo, U.; Schena, E.; Massaroni, C.; Lo Presti, C.; Berton, A.; Candela, V.; Denaro, V. Wearable systems for shoulder kinematics assessment: A systematic review. BMC Musculoskelet. Disord. 2019, 20, 546. [Google Scholar] [CrossRef]
- Grimes, L.; Outtrim, J.; Griffin, S.; Ercole, A. Accelerometery as a measure of modifiable physical activity in high- risk elderly preoperative patients: A prospective observational pilot study. BMJ Open 2019, 9, e032346. [Google Scholar] [CrossRef]
- Regterschot, G.; Ribbers, G.; Bussmann, J. Wearable Movement Sensors for Rehabilitation: From Technology to Clinical Practice. Sensors 2021, 23, 4744. [Google Scholar] [CrossRef]
- Syversen, A.; Dosis, A.; Jayne, D.; Zhang, Z. Wearable Sensors as a Preoperative Assessment Tool: A Review. Sensors 2024, 24, 482. [Google Scholar] [CrossRef]
- McIsaac, D.; Gill, M.; Boland, L.; Hutton, B.; Branje, K.; Shaw, J.; Grudzinski, A.; Barone, N.; Gillis, C. Prehabilitation in adult patients undergoing surgery: An umbrella review of systematic reviews. Br. J. Anaesth. 2022, 128, 244–257. [Google Scholar] [CrossRef]
- Master, H.; Bley, J.; Coronado, R.; Robinette, P.; White, D.; Pennings, J.; Archer, K. Effects of physical activity interventions using wearables to improve objectively-measured and patient-reported outcomes in adults following orthopaedic surgical procedures: A systematic review. PLoS ONE 2022, 17, e0263562. [Google Scholar] [CrossRef]
- Adams, S.; Bedwani, N.; Massey, L.; Bhargava, A.; Byrne, C.; Jensen, K.; Smart, N.; Walsh, C. Physical activity recommendations pre and post abdominal wall reconstruction: A scoping review of the evidence. Hernia 2022, 26, 701–714. [Google Scholar] [CrossRef]
- Ayuso, S.; Elhage, S.; Zhang, Y.; Aladegbami, B.; Gersin, K.; Fischer, J.; Augenstein, V.; Colavita, P.; Heniford, B. Predicting rare outcomes in abdominal wall reconstruction using image-based deep learning model. Surgery 2023, 173, 748–755. [Google Scholar] [CrossRef] [PubMed]
- Timmer, A.; Claessen, J.; Boermeester, M. Risk Factor-Driven Prehabilitation Prior to Abdominal Wall Reconstruction to Improve Postoperative Outcome. A Narrative Review. J. Abdom. Wall Surg. 2022, 1, 10722. [Google Scholar] [CrossRef] [PubMed]
- Kamarajah, S.; Bundred, J.; Weblin, J.; Tan, B. Critical appraisal on the impact of preoperative rehabilitation and outcomes after major abdominal and cardiothoracic surgery: A systematic review and meta-analysis. Surgery 2020, 167, 540–549. [Google Scholar] [CrossRef]
- Hughes, M.; Hackney, R.; Lamb, P.; Wigmore, S.; Deans, D.; Skipworth, R. Prehabilitation Before Major Abdominal Surgery: A Systematic Review and Meta-analysis. World J. Surg. 2019, 43, 1661–1668. [Google Scholar] [CrossRef]
- Liao, Y.; Vakanski, A.; Xian, M.; Paul, D.; Baker, R. A review of computational approaches for evaluation of rehabilitation exercises. Comput. Biol. Med. 2020, 119, 721. [Google Scholar] [CrossRef]
- Jeske, P.; Wojtera, B.; Banasiewicz, T. Prehabilitation-Current Role in Surgery. Pol. J. Surg. 2022, 94, 65–72. [Google Scholar] [CrossRef]
- Pan, H.; Wang, H.; Li, D.; Zhu, K.; Gao, Y.; Yin, R.; Shull, P. Automated, IMU-based spine angle estimation and IMU location identification for telerehabilitation. Neural Comput. Appl. 2024, 21, 96. [Google Scholar] [CrossRef]
- Lee, A.; Deutsch, J.; Holdsworth, L.; Kaplan, S.; Kosakowski, H.; Latz, R.; McNeary, L.; O’Neil, J.; Ronzio, O.; Sanders, K.; et al. Telerehabilitation in Physical Therapist Practice: A Clinical Practice Guideline From the American Physical Therapy Association. Phys. Ther. 2024, 104, pzae045. [Google Scholar] [CrossRef]
- Abouelnaga, W.; Aboelnour, N. Effectiveness of Active Rehabilitation Program on Sports Hernia: Randomized Control Trial. Ann. Rehabil. Med. 2019, 43, 305–313. [Google Scholar] [CrossRef]
- Gillis, C.; Ljungqvist, O.; Carli, F. Prehabilitation, enhanced recovery after surgery, or both? A narrative review. Br. J. Anaesth. 2022, 128, 434–448. [Google Scholar] [CrossRef]
- Vutan, A.; Lovasz, E.; Gruescu, C.; Sticlaru, C.; Sirbu, E.; Jurjiu, N.; Borozan, I.; Vutan, C. Evaluation of Symmetrical Exercises in Scoliosis by Using Thermal Scanning. Appl. Sci. 2022, 12, 721. [Google Scholar] [CrossRef]
- Whelan, D.; O’Reilly, M.; Ward, T.; Delahunt, E.; Caulfield, B. Technology in Rehabilitation: Evaluating the Single Leg Squat Exercise with Wearable Inertial Measurement Units. Methods Inf. Med. 2017, 56, 88–94. [Google Scholar] [PubMed]
- Basil, G.; Sprau, A.; Eliahu, K.; Borowsky, P.; Wang, M.; Jang, W. Using Smartphone-Based Accelerometer Data to Objectively Assess Outcomes in Spine Surgery. Neurosurgery 2021, 88, 763–772. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yu, H.; Kold, S.; Rahbek, O.; Bai, S. Wearable sensors for activity monitoring and motion control: A review. Biomim. Intell. Robot. 2023, 3, 100089. [Google Scholar] [CrossRef]
- Huang, X.; Xue, Y.; Ren, S.; Wang, F. Sensor-Based Wearable Systems for Monitoring Human Motion and Posture: A Review. Sensors 2023, 23, 9047. [Google Scholar] [CrossRef]
- Prat-Luri, A.; Moreno-Navarro, P.; Carpenac, C.; Manca, A.; Deriu, F.; Barbado, D.; Vera-Garcia, F. Smartphone accelerometry for quantifying core stability and developing exercise training progressions in people with multiple sclerosis. Mult. Scler. Relat. Disord. 2023, 72, 104618. [Google Scholar] [CrossRef]
- Renshaw, S.; Peterson, R.; Lewis, R.; Olson, M.; Henderson, W.; Kreuz, B.; Poulose, B.; Higgins, R. Acceptability and barriers to adopting physical therapy and rehabilitation as standard of care in hernia disease: A prospective national survey of providers and preliminary data. Hernia 2022, 26, 865–871. [Google Scholar] [CrossRef]
- Perez, J.; Schmidt, M.; Narvaez, A.; Welsh, L.; Diaz, R.; Castro, M.; Ansari, K.; Cason, R.; Bilezikian, J.; Hope, W.; et al. Evolving concepts in ventral hernia repair and physical therapy: Prehabilitation, rehabilitation, and analogies to tendon reconstruction. Hernia 2021, 25, 1–13. [Google Scholar] [CrossRef]
- Novak, J.; Busch, A.; Kolar, P.; Kobesova, A. Postural and respiratory function of the abdominal muscles: A pilot study to measure abdominal wall activity using belt sensors. Isokinet. Exerc. Sci. 2021, 29, 175–184. [Google Scholar] [CrossRef]
- Procházka, A.; Vyšata, O.; Mařík, V. Integrating the Role of Computational Intelligence and Digital Signal Processing in Education. IEEE Signal Process. Mag. 2021, 38, 154–162. [Google Scholar] [CrossRef]
- Procházka, A.; Dostál, O.; Cejnar, P.; Mohamed, H.; Pavelek, Z.; Vališ, M.; Vyšata, O. Deep Learning for Accelerometric Data Assessment and Ataxic Gait Monitoring. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 33434133. [Google Scholar] [CrossRef] [PubMed]
- Brennan, L.; Bevilacqua, A.; Kechadi, T.; Caulfield, B. Segmentation of shoulder rehabilitation exercises for single and multiple inertial sensor systems. J. Rehabil. Assist. Technol. Eng. 2020, 7, 2055668320915377. [Google Scholar] [CrossRef] [PubMed]
- Alfakir, A.; Arrowsmith, C.; Burns, D.; Razmjou, H.; Hardisty, M.; Whyne, C. Detection of Low Back Physiotherapy Exercises With Inertial Sensors and Machine Learning: Algorithm Development and Validation. JMIR Rehabil. Assist. Technol. 2022, 9, e38689. [Google Scholar] [CrossRef]
- Prochazka, A.; Schatz, M.; Tupa, O.; Yadollahi, M.; Vysata, O.; Valis, M. The MS Kinect Image and Depth Sensors Use for Gait Features Detection. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 2271–2274. [Google Scholar]
- Shah, N.; Aleong, R.; So, I. Novel Use of a Smartphone to Measure Standing Balance. JMIR Rehabil. Assist. Technol. 2016, 3, e4. [Google Scholar] [CrossRef]
- Skovbjerg, F.; Honoré, H.; Mechlenburg, I.; Lipperts, M.; Gade, R.; Naess-Schmidt, E. Monitoring Physical Behavior in Rehabilitation Using a Machine Learning–Based Algorithm for Thigh-Mounted Accelerometers: Development and Validation Study. JMIR Bioinform. Biotechnol. 2022, 3, e38512. [Google Scholar] [CrossRef]
- Gu, C.; Lin, W.; He, X.; Zhang, L.; Zhang, M. IMU-based motion capture system for rehabilitation applications: A systematic review. Biomim. Intell. Robot. 2023, 3, 100097. [Google Scholar] [CrossRef]
- Janáková, D. Foot and Ankle Kinematics in Patients with Femoroacetabular Impingement Syndrome. Master’s Thesis, Charles University, Prague, Czech Republic, 2021. [Google Scholar]
- Wouters, D.; Cavallaro, G.; Jensen, K.; East, B.; Jíšová, B.; Jorgensen, L.; López-Cano, M.; Rodrigues-Gonçalves, V.; Stabilini, C.; Berrevoet, F. The European Hernia Society Prehabilitation Project: A Systematic Review of Intra-Operative Prevention Strategies for Surgical Site Occurrences in Ventral Hernia Surgery. Front. Surg. 2022, 13, 847279. [Google Scholar] [CrossRef]
- Ciomperlik, H.; Dhanani, N.; Cassata, N.; Mohr, C.; Bernardi, K.; Holihan, J.; Lyons, N.; Olavarria, O.; Ko, T.; Liang, M. Patient quality of life before and after ventral hernia repair. Surgery 2020, 169, 1158–1163. [Google Scholar] [CrossRef]
- See, C.; Kim, T.; Zhu, D. Hernia Mesh and Hernia Repair: A Review. Eng. Regen. 2020, 1, 19–33. [Google Scholar]
- Qabbani, A.; Aboumarzouk, O.; El Bakry, T.; Al-Ansari, A.; Elakkad, M. Robotic inguinal hernia repair: Systematic review and meta-analysis. ANZ J. Surg. 2021, 91, 2277–2287. [Google Scholar] [CrossRef]
- Boukili, I.; Flaris, A.; Mercier, F.; Cotte, E.; Kepenekian, V.; Vaudoyer, D.; Passot, G. Prehabilitation before major abdominal surgery: Evaluation of the impact of a perioperative clinical pathway, a pilot study. Scand. J. Surg. 2022, 111, 14574969221083394. [Google Scholar] [CrossRef] [PubMed]
- Cvetkovic, B.; Szeklicki, R.; Janko, V.; Lutomski, P.; Luštrek, M. Real-time activity monitoring with a wristband and a smartphone. Inf. Fusion 2018, 43, 77–93. [Google Scholar] [CrossRef]
- Heredia-Elvar, J.; Juan-Recio, C.; Prat-Luri, A.; Barbado, D.; Vera-Garcia, F. Observational Screening Guidelines and Smartphone Accelerometer Thresholds to Establish the Intensity of Some of the Most Popular Core Stability Exercises. Front. Physiol. 2021, 12, 751569. [Google Scholar] [CrossRef]
- Procházka, A. Rehabilitation Exercises and Computational Intelligence. Dataset, IEEE DataPort. 2024. Available online: https://ieee-dataport.org/documents/rehabilitation-exercises-and-computational-intelligence (accessed on 4 August 2024).
- Dostál, O.; Procházka, A.; Vyšata, O.; Ťupa, O.; Cejnar, P.; Vališ, M. Recognition of Motion Patterns Using Accelerometers for Ataxic Gait Assessment. Neural Comput. Appl. 2021, 33, 2207–2215. [Google Scholar] [CrossRef]
- Procházka, A.; Vyšata, O.; Ťupa, O.; Mareš, J.; Vališ, M. Discrimination of Axonal Neuropathy Using Sensitivity and Specificity Statistical Measures. Neural Comput. Appl. 2014, 25, 1349–1358. [Google Scholar] [CrossRef]
- Martynek, D. Analysis of Rehabilitation Exercises Using Mobile Sensors. Mgr Thesis, University of Chemistry and Technology, Prague, Czech Republic, 2024. [Google Scholar]
- Martynek, D. Rehabilitation Data Analysis and Processing. WWW Page, University of Chemistry and Technology, Prague, Czech Republic. 2024. Available online: https://danielmartynekdp.pythonanywhere.com/ (accessed on 4 August 2024).
- Procházka, A.; Vyšata, O.; Vališ, M.; Ťupa, O.; Schatz, M.; Mařík, V. Bayesian classification and analysis of gait disorders using image and depth sensors of Microsoft Kinect. Digit. Signal Prog. 2015, 47, 169–177. [Google Scholar] [CrossRef]
- Magris, M.; Iosifidis, A. Bayesian learning for neural networks: An algorithmic survey. Artif. Intell. Rev. 2023, 56, 11773–11823. [Google Scholar] [CrossRef]
- Goh, E.; Ali, T. Robotic surgery: An evolution in practice. J. Surg. Protoc. Res. Methodol. 2022, 2022, snac003. [Google Scholar] [CrossRef]
Exercise | Name | Description |
---|---|---|
E1 | basic spinal motion | both legs bent |
E2 | spinal motion | one leg bent |
E3 | lifting of one leg | other leg on the floor |
E4 | foot circles | circles in the hip joint |
E5 | arm flection | arms motion |
E6 | body cross-motion | body sculpture rotation |
E7 | leg lifting | one-leg lift |
E8 | squat | high squat |
Individual | Age [year] | Gender m/f | Height [cm] | BMI [kg/m2] |
---|---|---|---|---|
1-AP | 75 | m | 187 | 27.7 |
2-HCH | 45 | f | 152 | 21.6 |
3-AM | 21 | f | 173 | 18.0 |
4-DM | 21 | m | 184 | 21.6 |
5-DDM | 47 | m | 178 | 26.5 |
6-DH | 24 | m | 185 | 22.8 |
7-JH | 21 | m | 176 | 22.3 |
8-JM | 69 | m | 185 | 27.5 |
9-LN | 22 | m | 182 | 19.0 |
10-VM | 47 | f | 163 | 25.6 |
11-MS | 34 | m | 192 | 27.1 |
12-AB | 47 | m | 176 | 22.6 |
13-TT | 22 | f | 175 | 24.5 |
14-KA | 8 | f | 135 | 21.6 |
15-T2 | 22 | f | 175 | 24.5 |
16-H2 | 46 | f | 152 | 21.6 |
MEAN | 35.7 | 173.1 | 23.4 | |
STD | 18.9 | 15.3 | 2.9 |
Ind. | Exercise | Mean | |||||||
---|---|---|---|---|---|---|---|---|---|
E1 | E2 | E3 | E4 | E5 | E6 | E7 | E8 | ||
1 | 1.5 | 1.7 | 2.1 | 2.4 | 2.3 | 7.7 | 1.0 | 5.7 | 3.0 |
2 | 1.5 | 3.7 | 4.5 | 2.1 | 1.1 | 0.6 | 2.9 | 3.7 | 2.5 |
3 | 2.0 | 0.8 | 1.9 | 3.2 | 3.5 | 7.3 | 1.6 | 1.6 | 2.7 |
4 | 3.0 | 0.8 | 1.8 | 1.4 | 0.3 | 3.5 | 3.5 | 3.3 | 2.2 |
5 | 3.1 | 6.2 | 6.7 | 3.8 | 3.8 | 2.9 | 1.6 | 0.6 | 3.6 |
6 | 4.8 | 3.6 | 5.1 | 5.8 | 3.6 | 7.0 | 1.3 | 3.0 | 4.3 |
7 | 0.5 | 0.7 | 1.5 | 3.9 | 2.5 | 1.3 | 0.8 | 1.9 | 1.6 |
8 | 3.9 | 3.1 | 3.7 | 0.8 | 3.2 | 3.8 | 4.2 | 7.6 | 3.8 |
9 | 2.9 | 4.8 | 5.9 | 4.7 | 5.9 | 2.5 | 1.5 | 0.9 | 3.6 |
10 | 2.5 | 5.7 | 0.8 | 5.6 | 0.1 | 4.0 | 2.3 | 0.5 | 2.7 |
11 | 0.1 | 3.9 | 4.7 | 2.3 | 2.9 | 1.2 | 1.6 | 4.4 | 2.6 |
12 | 1.3 | 2.5 | 1.8 | 1.1 | 2.0 | 0.8 | 4.5 | 3.0 | 2.1 |
13 | 0.7 | 3.5 | 0.8 | 4.0 | 1.3 | 4.7 | 1.8 | 1.6 | 2.3 |
14 | 4.3 | 0.6 | 1.4 | 7.5 | 3.6 | 4.6 | 7.3 | 3.4 | 4.1 |
15 | 1.0 | 1.0 | 2.0 | 1.0 | 1.3 | 0.4 | 0.8 | 1.3 | 1.1 |
16 | 1.4 | 1.7 | 4.0 | 3.6 | 0.6 | 1.7 | 1.3 | 5.5 | 2.5 |
Mean | 2.1 | 2.8 | 3.0 | 3.3 | 2.4 | 3.4 | 2.3 | 3.0 | |
Std | 1.4 | 1.8 | 1.9 | 1.9 | 1.6 | 2.4 | 1.8 | 2.0 |
Ind. | SVM Method | Bayes Method | NN Method | |||
---|---|---|---|---|---|---|
AC [%] | CV | AC [%] | CV | AC [%] | CV | |
1 | 69.6 | 0.39 | 59.8 | 0.37 | 76.1 | 0.34 |
2 | 72.0 | 0.42 | 54.8 | 0.53 | 76.3 | 0.16 |
3 | 84.9 | 0.25 | 79.6 | 0.28 | 84.9 | 0.16 |
4 | 63.4 | 0.45 | 54.8 | 0.56 | 66.7 | 0.44 |
5 | 76.8 | 0.37 | 73.7 | 0.23 | 82.1 | 0.18 |
6 | 86.5 | 0.21 | 81.3 | 0.25 | 90.6 | 0.11 |
7 | 72.6 | 0.38 | 71.6 | 0.35 | 72.6 | 0.21 |
8 | 63.4 | 0.45 | 59.1 | 0.48 | 74.2 | 0.25 |
9 | 66.3 | 0.40 | 64.1 | 0.47 | 78.3 | 0.30 |
10 | 73.7 | 0.39 | 63.2 | 0.40 | 75.8 | 0.20 |
11 | 68.1 | 0.44 | 52.7 | 0.48 | 69.2 | 0.22 |
12 | 60.9 | 0.48 | 52.2 | 0.47 | 72.8 | 0.23 |
13 | 68.5 | 0.46 | 64.1 | 0.34 | 70.7 | 0.35 |
14 | 71.4 | 0.31 | 72.5 | 0.33 | 81.3 | 0.21 |
15 | 69.1 | 0.43 | 50.0 | 0.39 | 66.0 | 0.39 |
16 | 72.3 | 0.33 | 67.0 | 0.38 | 76.6 | 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Procházka, A.; Martynek, D.; Vitujová, M.; Janáková, D.; Charvátová, H.; Vyšata, O. Mobile Accelerometer Applications in Core Muscle Rehabilitation and Pre-Operative Assessment. Sensors 2024, 24, 7330. https://doi.org/10.3390/s24227330
Procházka A, Martynek D, Vitujová M, Janáková D, Charvátová H, Vyšata O. Mobile Accelerometer Applications in Core Muscle Rehabilitation and Pre-Operative Assessment. Sensors. 2024; 24(22):7330. https://doi.org/10.3390/s24227330
Chicago/Turabian StyleProcházka, Aleš, Daniel Martynek, Marie Vitujová, Daniela Janáková, Hana Charvátová, and Oldřich Vyšata. 2024. "Mobile Accelerometer Applications in Core Muscle Rehabilitation and Pre-Operative Assessment" Sensors 24, no. 22: 7330. https://doi.org/10.3390/s24227330
APA StyleProcházka, A., Martynek, D., Vitujová, M., Janáková, D., Charvátová, H., & Vyšata, O. (2024). Mobile Accelerometer Applications in Core Muscle Rehabilitation and Pre-Operative Assessment. Sensors, 24(22), 7330. https://doi.org/10.3390/s24227330