Fabry–Perot Effect Suppression in Gas Cells Used in THz Absorption Spectrometers. Experimental Verification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabry–Perot Suppression Methods
2.2. Experimental Setup
2.3. Experimental Conditions
3. Results
3.1. Amplitude Modulation Spectroscopy
3.2. Frequency Modulation Spectroscopy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lou, M.; Swearer, D.F.; Gottheim, S.; Phillips, D.J.; Simmons, J.G.; Halas, N.J.; Everitt, H.O. Quantitative Analysis of Gas Phase Molecular Constituents Using Frequency-Modulated Rotational Spectroscopy. Rev. Sci. Instrum 2019, 90, 053110-1–053110-13. [Google Scholar] [CrossRef] [PubMed]
- Schiff, H.I.; Mackay, G.I.; Bechara, J. The Use of Tunable Diode Laser Absorption Spectroscopy for Atmospheric Measurements. Res. Chem. Intermed. 1994, 20, 525–556. [Google Scholar] [CrossRef]
- Bomse, D.S.; Stanton, A.C.; Silver, J.A. Frequency Modulation and Wavelength Modulation Spectroscopies: Comparison of Experimental Methods Using a Lead-Salt Diode Laser. Appl. Opt. 1992, 31, 718–731. [Google Scholar] [CrossRef] [PubMed]
- Silver, J.A. Frequency-Modulation Spectroscopy for Trace Species Detection: Theory and Comparison among Experimental Methods. Appl. Opt. 1992, 31, 707–717. [Google Scholar] [CrossRef] [PubMed]
- Reid, J.; El-Sherbiny, M.; Garside, B.K.; Ballik, E.A. Sensitivity Limits of a Tunable Diode Laser Spectrometer, with Application to the Detection of NO_2 at the 100-Ppt Level. Appl. Opt. 1980, 19, 3349–3354. [Google Scholar] [CrossRef]
- Vieira, F.S.; Cruz, F.C.; Plusquellic, D.F.; Diddams, S.A. Tunable Resolution Terahertz Dual Frequency Comb Spectrometer. Opt. Express. 2016, 24, 30100–31007. [Google Scholar] [CrossRef]
- Werle, P. A Review of Recent Advances in Semiconductor Laser Based Gas Monitors. Spectrochim. Acta A Mol. Biomol. Spectrosc. 1998, 54, 197–236. [Google Scholar] [CrossRef]
- Decker, J.; Fertein, É.; Bruckhuisen, J.; Houzel, N.; Kulinski, P.; Fang, B.; Zhao, W.; Hindle, F.; Dhont, G.; Bocquet, R.; et al. MULTICHARME: A Modified Chernin-Type Multi-Pass Cell Designed for IR and THz Long-Path Absorption Measurements in the CHARME Atmospheric Simulation Chamber. Atmos. Meas. Tech. 2022, 15, 1201–1215. [Google Scholar] [CrossRef]
- Huang, Y.F.; Chattopadhyay, S.; Jen, Y.J.; Peng, C.Y.; Liu, T.A.; Hsu, Y.K.; Pan, C.L.; Lo, H.C.; Hsu, C.H.; Chang, Y.H.; et al. Improved Broadband and Quasi-Omnidirectional Anti-Reflection Properties with Biomimetic Silicon Nanostructures. Nat. Nanotechnol. 2007, 2, 770–774. [Google Scholar] [CrossRef]
- Cai, B.; Chen, H.; Xu, G.; Zhao, H.; Sugihara, O. Ultra-Broadband THz Antireflective Coating with Polymer Composites. Polymers 2017, 9, 574. [Google Scholar] [CrossRef]
- Chen, H.-T.; Zhou, J.; O’Hara, J.F.; Chen, F.; Azad, A.K.; Taylor, A.J. Antireflection Coating Using Metamaterials and Identification of Its Mechanism. Phys. Rev. Lett. 2010, 105, 073901. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.W.; Han, P.Y.; Zhang, X.C. Tunable Broadband Antireflection Structures for Silicon at Terahertz Frequency. Appl. Phys. Lett. 2009, 94, 041106. [Google Scholar] [CrossRef]
- Simonyan, K.; Gharagulyan, H.; Parsamyan, H.; Khachatryan, A.; Yeranosyan, M. Broadband THz Metasurface Bandpass Filter/Antireflection Coating Based on Metalized Si Cylindrical Rings. Semicond. Sci. Technol. 2024, 39, 095012. [Google Scholar] [CrossRef]
- Kim, D.-S.; Kim, D.-J.; Kim, D.-H.; Hwang, S.; Jang, J.-H. Simple Fabrication of an Antireflective Hemispherical Surface Structure Using a Self-Assembly Method for the Terahertz Frequency Range. Opt. Lett. 2012, 37, 2742–2744. [Google Scholar] [CrossRef] [PubMed]
- Silver, J.A.; Stanton, A.C. Optical Interference Fringe Reduction in Laser Absorption Experiments. Appl. Opt. 1988, 27, 1914–1916. [Google Scholar] [CrossRef] [PubMed]
- Ohno, S. Fabry-Pérot Interferometer Scanned by Geometric Phase. In Proceedings of the 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Nagoya, Japan, 9–14 September 2018. [Google Scholar] [CrossRef]
- Webster, C.R. Brewster-Plate Spoiler: A Novel Method for Reducing the Amplitude of Interference Fringes That Limit Tunable-Laser Absorption Sensitivities. J. Opt. Soc. Am. B 1985, 2, 1464–1470. [Google Scholar] [CrossRef]
- Wichmann, M.; Scherger, B.; Schumann, S.; Lippert, S.; Scheller, M.; Busch, S.F.; Jansen, C.; Koch, M. Terahertz Brewster Lenses. Opt. Express 2011, 19, 25151–25160. [Google Scholar] [CrossRef]
- Mouret, G.; Guinet, M.; Cuisset, A.; Croize, L.; Eliet, S.; Bocquet, R.; Hindle, F. Versatile Sub-THz Spectrometer for Trace Gas Analysis. IEEE Sens. J. 2012, 13, 133–138. [Google Scholar] [CrossRef]
- Kistenev, Y.V.; Borisov, A.V.; Skiba, V.E.; Raspopin, G.K.; Tretyakov, A.K. The Fabry-Perot Effect Suppression in Gas Cells Used in THz Absorption Spectrometers. J. Quant. Spectrosc. Radiat. Transf. 2023, 315, 108891. [Google Scholar] [CrossRef]
- Ismail, N.; Kores, C.C.; Geskus, D.; Pollnau, M. Fabry-Pérot Resonator: Spectral Line Shapes, Generic and Related Airy Distributions, Linewidths, Finesses, and Performance at Low or Frequency-Dependent Reflectivity. Opt. Express 2016, 24, 16366–16389. [Google Scholar] [CrossRef]
- Siegman, E. Resonance properties of passive optical cavities. In Lasers, 1st ed.; University Science Books: Mill Valley, CA, USA, 1986; pp. 413–428. ISBN 978-093-570-211-8. [Google Scholar]
- Shi, T.; Miao, J.; Zhang, J.; Chen, J. Antiresonant Fabry-Pérot Cavity with Ultralow Finesse. Phys. Rev. A 2023, 107, 023517-1–023517-9. [Google Scholar] [CrossRef]
- Bjorklund, G.C. Frequency-Modulation Spectroscopy: A New Method for Measuring Weak Absorptions and Dispersions. Opt. Lett. 1980, 5, 15–17. [Google Scholar] [CrossRef]
- Hindle, F.; Kuuliala, L.; Mouelhi, M.; Cuisset, A.; Bray, C.; Vanwolleghem, M.; Devlieghere, F.; Mouret, G.; Bocquet, R. Monitoring of Food Spoilage by High Resolution THz Analysis. Analyst 2018, 143, 5536–5544. [Google Scholar] [CrossRef] [PubMed]
- Arndt, R. Analytical Line Shapes for Lorentzian Signals Broadened by Modulation. J. Appl. Phys. 1965, 36, 2522–2524. [Google Scholar] [CrossRef]
- Reid, J.; Labrie, D. Second-Harmonic Detection with Tunable Diode Lasers—Comparison of Experiment and Theory. Appl. Phys. 1981, 26, 203–210. [Google Scholar] [CrossRef]
- Wilson, G.V.H. Modulation Broadening of NMR and ESR Line Shapes. J. Appl. Phys. 1963, 34, 3276–3285. [Google Scholar] [CrossRef]
- HITRAN on the Web. Available online: https://hitran.iao.ru/ (accessed on 9 August 2024).
- Kistenev, Y.V.; Kuzmin, D.A.; Sandykova, E.A.; Shapovalov, A.V. Quantitative Comparison of the Absorption Spectra of the Gas Mixtures in Analogy to the Criterion of Pearson. Proc. SPIE 2015, 9680, 96803S-1–96803S-8. [Google Scholar] [CrossRef]
- Kistenev, Y.V.; Cuisset, A.; Hindl, F.; Raspopin, G.K.; Vaks, V.L.; Domracheva, E.G.; Chernyaeva, M.B.; Karapuzikov, A.I. Potentialities of Small-Size Subterahertz-Wave Spectrometers Based on Cascade Frequency Multiplication for Local Environmental Monitoring of the Atmosphere. Radiophys. Quantum Electron. 2023, 65, 746–759. [Google Scholar] [CrossRef]
- Dobrowolski, J.A.; Poitras, D.; Ma, P.; Vakil, H.; Acree, M. Toward Perfect Antireflection Coatings: Numerical Investigation. Appl. Opt. 2002, 41, 3075–3083. [Google Scholar] [CrossRef]
- Schallenberg, U.B. Antireflection Design Concepts with Equivalent Layers. Appl. Opt. 2006, 45, 1507–1514. [Google Scholar] [CrossRef]
- Vaks, V.L.; Khodos, V.V.; Spivak, E.V. A Nonstationary Microwave Spectrometer. Rev. Sci. Instrum. 1999, 70, 3447–3453. [Google Scholar] [CrossRef]
, cm−1 | , GHz | , GHz | |
---|---|---|---|
The standard measuring gas cell | 0.0185 | 8.43 | 556.178 |
The standard measuring gas cell with additional external movable window | 0.0182 | 6.79 | 556.764 |
HITRAN [29] | 0.0188 | 6.75 | 557.146 |
The relative error, % | |||
The standard measuring gas cell | 1.6 | 21.7 | 0.17 |
The standard measuring gas cell with additional external movable window | 3.2 | 0.55 | 0.07 |
, cm−1 | , GHz | , GHz | |
---|---|---|---|
The standard measuring gas cell | 0.0061 | 0.18 | 556.848 |
The standard measuring gas cell with additional external movable window | 0.0116 | 0.381 | 556.915 |
HITRAN [29] | 0.0163 | 0.271 | 556.938 |
The relative error, % | |||
The standard measuring gas cell | 62.57 | 33.6 | 0.015 |
The standard measuring gas cell with additional external movable window | 28.83 | 40.63 | 0.003 |
Gas Sample Pressure | The Standard Measuring Gas Cell | The Standard Measuring Gas Cell with Additional External Movable Window |
---|---|---|
1 atm | 0.063 | 0.006 |
0.04 atm | 0.711 | 0.012 |
Gas Sample Pressure | , cm−1 (the Standard Measuring Gas Cell) | cm−1 (the Standard Measuring Gas Cell with Additional External Movable Window) |
---|---|---|
1 atm | 1.52 × 10−3 | 0.81 × 10−3 |
0.04 atm | 2.89 × 10−3 | 1.38 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raspopin, G.K.; Borisov, A.V.; Cuisset, A.; Hindle, F.; Yakovlev, S.V.; Kistenev, Y.V. Fabry–Perot Effect Suppression in Gas Cells Used in THz Absorption Spectrometers. Experimental Verification. Sensors 2024, 24, 7380. https://doi.org/10.3390/s24227380
Raspopin GK, Borisov AV, Cuisset A, Hindle F, Yakovlev SV, Kistenev YV. Fabry–Perot Effect Suppression in Gas Cells Used in THz Absorption Spectrometers. Experimental Verification. Sensors. 2024; 24(22):7380. https://doi.org/10.3390/s24227380
Chicago/Turabian StyleRaspopin, George K., Alexey V. Borisov, Arnaud Cuisset, Francis Hindle, Semyon V. Yakovlev, and Yury V. Kistenev. 2024. "Fabry–Perot Effect Suppression in Gas Cells Used in THz Absorption Spectrometers. Experimental Verification" Sensors 24, no. 22: 7380. https://doi.org/10.3390/s24227380
APA StyleRaspopin, G. K., Borisov, A. V., Cuisset, A., Hindle, F., Yakovlev, S. V., & Kistenev, Y. V. (2024). Fabry–Perot Effect Suppression in Gas Cells Used in THz Absorption Spectrometers. Experimental Verification. Sensors, 24(22), 7380. https://doi.org/10.3390/s24227380