Optimizing Dielectric Rod Antenna Performance with Spoof Surface Plasmon Polariton-Based Feeding Method
Abstract
:1. Introduction
2. Feeder Geometrical Properties
3. Numerical Simulation and Optimization
4. Experimental Characterization and Results
- Lower operating frequency: Due to the implementation of SSPP feeding, the dielectric rod antenna, which originally operated in the millimeter waveband, has been adapted to function within a lower frequency range of 1–10 GHz.
- Cost-effectiveness: It offers cost advantages in production, maintenance, and implementation, potentially leading to significant savings.
- Feeder length: The rod antenna’s feeder in the proposed design made of SSPPs has a larger length compared to the antenna itself.
- Complex field interaction: Differentiating between specific and nonspecific field interactions along the SSPP’s surface is challenging.
5. Conclusions
6. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zayats, A.V.; Smolyaninov, I.I.; Maradudin, A.A. Nano-optics of surface plasmon polaritons. Phys. Rep. 2005, 408, 131–314. [Google Scholar] [CrossRef]
- Okamoto, K. Fundamentals of Optical Waveguides; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Pitarke, J.M.; Silkin, V.M.; Chulkov, E.V.; Echenique, P.M. Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys. 2007, 70, 1–87. [Google Scholar] [CrossRef]
- Maier, S.A. Plasmonics: Fundamentals and Applications, 1st ed.; Springer: New York, NY, USA, 2007; Volume 1. [Google Scholar]
- Liu, H.; Wang, B.; Ke, L.; Deng, J.; Chum, C.C.; Teo, S.L.; Shen, L.; Maier, S.A.; Teng, J. High aspect sub diffraction-limit photolithography via a silver superlens. Nano Lett. 2012, 12, 1549–1554. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, X.; Yuan, X.; Teng, J. Optical coupling of surface plasmons between grapheme sheets. Appl. Phys Lett. 2012, 100, 131111. [Google Scholar] [CrossRef]
- Atwater, H.; Polman, A.; Kosten, E.; Callahan, D.; Spinelli, P.; Eisler, C.; Escarra, M.; Warmann, E.; Flowers, C. Nanophotonic design principles for ultrahigh efficiency photovoltaics. AIP Conf. Proc. 2013, 1519, 17–21. [Google Scholar]
- Schmidt, M.A.; Lei, D.Y.; Wondraczek, L.; Nazabal, V.; Maier, S.A. Hybrid nanoparticle–microcavity-based plasmonic nanosensor with improved detection resolution and extended remote-sensing ability. Nat. Commun. 2012, 3, 1108. [Google Scholar] [CrossRef]
- Zhang, S.; Xiong, Y.; Bartal, G.; Yin, X.; Zhang, X. Magnetized plasma for reconfigurable sub diffraction imaging. Phys. Rev. Lett. 2011, 106, 243901. [Google Scholar] [CrossRef]
- Anker, J.N.; Hall, W.P.; Lyandres, O.; Shah, N.C.; Zhao, J.; Van Duyne, R.P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453. [Google Scholar] [CrossRef]
- Quaranta, G.; Basset, G.; Martin, O.J.F.; Gallinet, B. Recent advances in resonant waveguide gratings. Laser Photonics Rev. 2018, 12, 1800017. [Google Scholar] [CrossRef]
- Bansal, S. Long-wave bilayer graphene/HgCdTe based GBp type-II superlattice unipolar barrier infrared detector. Results Opt. 2023, 12, 100425. [Google Scholar] [CrossRef]
- Bansal, S.; Rajpoot, A.K.; Chamundeswari, G.; Prakash, K.; Kumar, P.R.; Rashed, A.N.Z.; Soliman, M.S.; Islam, M.T. Pt/ZnO and Pt/few-layer graphene/ZnO Schottky devices with Al ohmic contacts using Atlas simulation and machine learning. J. Sci. Adv. Mater. Devices 2024, 9, 100798. [Google Scholar] [CrossRef]
- Chau, Y.F.C.; Chao, C.T.C.; Huang, H.J.; Wang, Y.C.; Chiang, H.P.; Idris, M.N.S.I.M.; Masri, Z.; Lim, C.M. Strong and tunable plasmonic field coupling and enhancement generating from the protruded metal nanorods and dielectric cores. Results Phys. 2019, 13, 102290. [Google Scholar] [CrossRef]
- Chou Chao, C.T.; Chou Chau, Y.F. Highly sensitive multichannel fano resonance-based plasmonic sensor for refractive index and temperature sensing application. Photonics 2023, 10, 82. [Google Scholar] [CrossRef]
- Smith, D.R.; Pendry, J.B.; Wiltshire, M.C. Metamaterials and negative refractive index. Science 2004, 305, 788–792. [Google Scholar] [CrossRef]
- Hibbins, A.P.; Evans, B.R.; Sambles, J.R. Experimental Verification of Designer Surface Plasmons. Science 2005, 308, 670–672. [Google Scholar] [CrossRef]
- Yao, K.; Liu, Y. Plasmonic metamaterials. Nanotechnol. Rev. 2014, 3, 177–210. [Google Scholar] [CrossRef]
- Garcia-Vidal, F.J.; Martín-Moreno, L.; Pendry, J.B. Surfaces with holes in them: New plasmonic metamaterials. J. Opt. A Pure Appl. Opt. 2005, 7, S97–S101. [Google Scholar] [CrossRef]
- Shen, X.; Cui, T.J.; Cano, D.M.; Garcia-Vidal, F.J. Conformal surface plasmons propagating on ultrathin and flexible films. Proc. Natl. Acad. Sci. USA 2013, 110, 40–45. [Google Scholar] [CrossRef]
- Gao, X.; Shi, J.H.; Shen, X.; Ma, H.F.; Jiang, W.X.; Li, L.; Cui, T.J. Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies. Appl. Phys. Lett. 2013, 102, 151912. [Google Scholar] [CrossRef]
- Ma, H.F.; Shen, X.; Cheng, Q.; Jiang, W.X.; Cui, T.J. Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser Photon-Rev. 2014, 8, 146–151. [Google Scholar] [CrossRef]
- Pan, B.C.; Liao, Z.; Zhao, J.; Cui, T.J. Controlling rejections of spoof surface plasmon polaritons using metamaterial particles. Opt. Express 2014, 22, 13940. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Zhou, L.; Liao, Z.; Ma, H.F.; Cui, T.J. An ultra-wideband surface plasmonic filter in microwave frequency. Appl. Phys. Lett. 2014, 104, 191603. [Google Scholar] [CrossRef]
- Cheng, Z.W.; Wang, M.; You, Z.H.; Ma, H.F.; Cui, T.J. Spoof surface plasmonics: Principle, design, and applications. J. Phys. Condens. Matter 2022, 34, 263002. [Google Scholar] [CrossRef]
- Pendry, J.B.; Martín-Moreno, L.; Garcia-Vidal, F.J. Mimicking Surface Plasmons with Structured Surfaces. Science 2004, 305, 847–848. [Google Scholar] [CrossRef]
- Rusina, A.; Durach, M.; Stockman, M.I. Theory of spoof plasmons in real metals. Appl. Phys. A 2010, 100, 375–378. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, G.; Sun, L.; Lin, F. Trapping of surface Plasmon wave through gradient corrugated strip with underlayer ground and manipulating its propagation. Appl. Phys. Lett. 2015, 106, 021104. [Google Scholar] [CrossRef]
- Tang, W.; Wang, J.; Yan, X.; Liu, J.; Gao, X.; Zhang, L.; Cui, T.J. Broadband and high-efficiency excitation of spoof surface Plasmon polaritons through rectangular waveguide. Front. Phys. 2020, 8, 582692. [Google Scholar] [CrossRef]
- Jaiswal, R.K.; Pandit, N.; Pathak, N.P. Spoof surface plasmon polaritons based reconfigurable band-pass filter. IEEE Photon-Technol. Lett. 2018, 31, 218–221. [Google Scholar] [CrossRef]
- Chaparala, R.; Tupakula, S. Metal-insulator-metal structured surface Plasmon polaritons waveguide with improved gain. In Proceedings of the Conference on Lasers and Electro-Optics/Pacific Rim 2022, Sapporo, Japan, 31 August–5 September 2022; Optica Publishing Group: Washington, DC, USA, 2022. [Google Scholar] [CrossRef]
- Ghattas, N.; Ghuniem, A.M.; Abuelenin, S.M. Optimization of dielectric rod antenna in millimeter waveband for wireless communications. arXiv 2018, arXiv:1805.05475. [Google Scholar]
- Reese, R.; Tesmer, H.; Polat, E.; Jost, M.; Nickel, M.; Jakoby, R.; Maune, H. Fully dielectric rod antenna arrays with high permittivity materials. In Proceedings of the 12th German Microwave Conference (GeMiC), Stuttgart, Germany, 25–27 March 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Withayachumnankul, W.; Yamada, R.; Fujita, M.; Nagatsuma, T. Evolution of rod antennas for integrated terahertz photonics. In Proceedings of the 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Nagoya, Japan, 9–14 September 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar] [CrossRef]
- Kazemi, R.; Fathy, A.E.; Sadeghzadeh, R.A. Dielectric rod antenna array with substrate integrated waveguide planar feed network for wideband applications. IEEE Trans. Antennas Propag. 2012, 60, 1312–1319. [Google Scholar] [CrossRef]
- Bansal, S.; Chauhan, R.; Kumar, P. A Cuckoo Search based WDM Channel Allocation Algorithm. Int. J. Comput. Appl. 2014, 96, 6–12. [Google Scholar] [CrossRef]
- Bansal, S.; Kumar, S.; Bhalla, P. A Novel Approach to WDM Channel Allocation: Big Bang–Big Crunch Optimization. In Proceedings of the Zonal Seminar on Emerging Trends in Embedded System Technologies (ETECH) Organized by The Institution of Electronics and Telecommunication Engineers (IETE), Chandigarh, India, 23–24 August 2013; pp. 80–81. [Google Scholar]
- Wen, L.; Hu, W.; Pang, B.; Luo, Q.; Gao, S. Spoof Surface Plasmon Polariton-Based Antenna and Array by Exciting Both Even- and Odd-Mode Resonances. IEEE Trans. Antennas Propag. 2023, 72, 1593–1602. [Google Scholar] [CrossRef]
- Jaiswal, R.K.; Pandit, N.; Pathak, N.P. Design, analysis, and characterization of designer surface plasmon polariton-based dual-band antenna. Plasmonics 2018, 13, 1209–1218. [Google Scholar] [CrossRef]
- Gupta, A.; Kumar, V.; Bansal, S.; Alsharif, M.H.; Jahid, A.; Cho, H.-S. A Miniaturized Tri-Band Implantable Antenna for ISM/WMTS/Lower UWB/Wi-Fi Frequencies. Sensors 2023, 23, 6989. [Google Scholar] [CrossRef]
- Cao, D.; Li, Y.; Wang, J.; Ge, L. A millimeter-wave spoof surface plasmon polaritons fed dual- polarized microstrip patch antenna array. IEEE Trans. Antennas Propag. 2023, 71, 2363–2374. [Google Scholar] [CrossRef]
- Zhang, X.-F.; Fan, J.; Chen, J.-X. High gain and high-efficiency millimeter-wave antenna based on spoof surface plasmon polaritons. IEEE Trans. Antennas Propag. 2018, 67, 687–691. [Google Scholar] [CrossRef]
- Han, Y.; Gong, S.; Wang, J.; Li, Y.; Fan, Y.; Zhang, J.; Qu, S. Shared-aperture antennas based on even- and odd-mode spoof surface plasmon polaritons. IEEE Trans. Antennas Propag. 2019, 68, 3254–3258. [Google Scholar] [CrossRef]
- Gupta, A.; Kumari, M.; Sharma, M.; Alsharif, M.H.; Uthansakul, P.; Uthansakul, M.; Bansal, S. 8-port MIMO antenna at 27 GHz for n261 band and exploring for body centric communication. PLoS ONE 2024, 19, e0305524. [Google Scholar] [CrossRef]
L1 | L2 | L3 | D1 | D2 |
---|---|---|---|---|
λ0 | 6 λ0 | 0.6 λ0 | 0.2 λ0 | 0.6 λ0 |
D3 | D4 |
---|---|
0.08 λ0 | 0.2 λ0 |
Ref. | Feeding Source | (f0) GHz | Gain (dBi) | S11 (dB) | Antenna Length (mm) | Bandwidth (%) |
---|---|---|---|---|---|---|
[36] | SSPP | - | - | −29 dB | λ0/2 | 14.8 |
[37] | SSPP | 4.5 GHz | 8.43 dBi | −25 dB | 5 λ0 | 6.5–10.4 GHz (46) |
[38] | SSPP | 30 GHz | 6.8 dBi | −18 dB | 6.08 × 4.51 mm | 4.2–6.5 GHz (43) |
[39] | SSPP | 26.18 GHz | 6.1 dBi | −28.8 dB | 8.3 × 2 mm | 27.9–30.5 GHz (8.82) |
[40] | SSPP | 27.2 GHz | 15 dBi | −36 dB | λ0 + 1 | 27.5–32 GHz (55) |
[41] | SSPP | 11.5 GHz | 6.8 dBi | −25 dB | 6 λ0 | 7.5–9.3 GHz (21.35) |
[This work] | SSPP | 7.2 GHz | 16.4 dBi | −36.3 dB | 7.6 λ0 | 5.4–8.2 GHz (39) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaparala, R.; Imamvali, S.; Tupakula, S.; Aljaidi, M.; Bansal, S.; Prakash, K.; Alkoradees, A.F. Optimizing Dielectric Rod Antenna Performance with Spoof Surface Plasmon Polariton-Based Feeding Method. Sensors 2024, 24, 7543. https://doi.org/10.3390/s24237543
Chaparala R, Imamvali S, Tupakula S, Aljaidi M, Bansal S, Prakash K, Alkoradees AF. Optimizing Dielectric Rod Antenna Performance with Spoof Surface Plasmon Polariton-Based Feeding Method. Sensors. 2024; 24(23):7543. https://doi.org/10.3390/s24237543
Chicago/Turabian StyleChaparala, Rishitej, Shaik Imamvali, Sreenivasulu Tupakula, Mohammad Aljaidi, Shonak Bansal, Krishna Prakash, and Ali Fayez Alkoradees. 2024. "Optimizing Dielectric Rod Antenna Performance with Spoof Surface Plasmon Polariton-Based Feeding Method" Sensors 24, no. 23: 7543. https://doi.org/10.3390/s24237543
APA StyleChaparala, R., Imamvali, S., Tupakula, S., Aljaidi, M., Bansal, S., Prakash, K., & Alkoradees, A. F. (2024). Optimizing Dielectric Rod Antenna Performance with Spoof Surface Plasmon Polariton-Based Feeding Method. Sensors, 24(23), 7543. https://doi.org/10.3390/s24237543