Development of an Integrating Sphere-Based Wide-Range Light Source System for the Linearity Evaluation of a Photodetector Used in Radiation Detection and Bioanalysis Instruments
Abstract
:1. Introduction
2. Integrating Sphere-Based Light Source System
3. Measurements
4. Results and Discussion
4.1. Results for PMT Linearity Tests
4.2. Verification of Reference SiPD
4.3. PMT Linearity Characteristics
4.4. Application
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Matsumoto, T.; Masuda, A.; Harano, H.; Hori, J.; Sano, T. Improvement of gamma-ray subtraction procedure for a current mode neutron detector with a pair of 6Li- and 7Li-glass scintillators. Radiat. Prot. Dosim. 2019, 188, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, A.; Watanabe, K.; Yamazaki, A.; Yoshihashi, S.; Imai, S.; Masuda, A.; Matsumoto, T.; Tanaka, H.; Sakurai, Y.; Nogami, M.; et al. Evaluation of the thermal neutron sensitivity, output linearity, and gamma-ray response of optical fiber-based neutron detectors using Li-glass scintillator. Nucl. Instrum. Methods 2022, 1025, 166074. [Google Scholar] [CrossRef]
- Kang, K.H.; Jeon, H.B.; Kim, G.N.; Park, H.; Hyun, H.J.; Kah, D.H. Response of a Photodiode Coupled with Boron for Neutron Detection. J. Korean Phys. Soc. 2014, 65, 1374–1378. [Google Scholar] [CrossRef]
- Santoro, R.; Caccia, M.; Ampilogov, N.; Malinverno, L.; Allwork, C.; Ellis, M.; Abba, A.; Caponioc, F.; Cusimanoc, A. Qualification of a compact neutron detector based on SiPM. J. Inst. 2020, 15, C05053. [Google Scholar] [CrossRef]
- Harano, H.; Matsumoto, T.; Tanimura, Y.; Shikaze, Y.; Baba, M.; Nakamura, T. Monoenergetic and quasi-monoenergetic neutron reference fields in Japan. Radiat. Meas. 2010, 45, 1076–1082. [Google Scholar] [CrossRef]
- Nolte, R.; Thomas, D.J. Monoenergetic fast neutron reference fields: I. Neutron production. Metrologia 2011, 48, S263–S273. [Google Scholar] [CrossRef]
- Wang, P.; Yang, J.; Li, F.; Zhang, H.; Ren, Z.; Liu, Z.; Zhang, H.; Xiong, Z.; Li, S.; Gao, F. Thermal neutron reference radiation facility with high thermalization and large uniformity area. Metrologia 2023, 60, 045002. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Current Status of Neutron Capture Therapy; IAEA-TECDOC-1223; International Atomic Energy Agency: Vienna, Austria, 2001. [Google Scholar]
- Masuda, A.; Matsumoto, T.; Takada, K.; Onishi, T.; Kotaki, K.; Sugimoto, H.; Kumada, H.; Harano, H.; Sakae, T. Neutron spectral fluence measurements using a Bonner sphere spectrometer in the development of the iBNCT accelerator-based neutron source. Appl. Radiat. Isot. 2017, 127, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Masuda, A.; Matsumoto, T.; Kumada, H.; Takada, K.; Hori, J.; Sakurai, Y.; Sano, T.; Harano, H.; Sakae, T. Demonstration of BSS unfolding method for BNCT neutron field and development of new BSS using Li-glass scintillators coupled with current-mode-operated PMTs for intense neutron field. In Proceedings of the 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC), Sydney, Australia, 10–17 November 2018. [Google Scholar] [CrossRef]
- Hamamatsu Photonics K. K. Editorial Committee. Photomultiplier Tubes—Basics and Applications, 4th ed.; Inproject, Inc., Ed.; Hamamatsu Photonics K. K. Electron Tube Division: Hamamatsu, Japan, 2017. [Google Scholar]
- Tanabe, M.; Niwa, K.; Kinoshita, K. Absolute optical responsivity down to the photon counting level with a photomultiplier tube. Rev. Sci. Instrum. 2017, 88, 043104. [Google Scholar] [CrossRef] [PubMed]
- Dudkin, G.N.; Kuznetsov, S.I.; Nurkin, A.; Padalko, V.N. Method for studying the linearity of photomultipliers using noncalibrated light sources. Nucl. Inst. Methods A 2017, 875, 137–140. [Google Scholar] [CrossRef]
- Photomultiplier Tube Assembly H3165-10, Hamamatsu Co. Available online: https://www.hamamatsu.com/jp/en/product/optical-sensors/pmt/pmt-assembly/head-on-type/H3165-10.html (accessed on 11 October 2024).
- Kumada, H.; Takada, K.; Naito, F.; Kurihara, T.; Sugimura, T.; Matsumoto, Y.; Sakurai, H.; Matsumura, A.; Sakae, T. Beam performance of the iBNCT as a compact linac-based BNCT neutron source developed by University of Tsukuba. In Proceedings of the AIP Conference Proceedings, TX, USA, 12–17 August 2019; Volume 2160, p. 050013. [Google Scholar] [CrossRef]
- 439 Digital Current Integrator, ORTEC AMETEK. Available online: https://www.ortec-online.com/products/electronic-instruments/digital-current-integrator/439 (accessed on 11 October 2024).
- Hemming, B.; Ikonen, E.; Noorma, M. Measurement of aperture areas using an optical coordinate measuring machine. Int. J. Optomechatronics 2007, 1, 297–311. [Google Scholar] [CrossRef]
- Niwa, K.; Kubota, H.; Enomoto, T.; Ichino, Y.; Ohmiya, Y. Quantitative analysis of bioluminescence optical signal. Biosensors 2023, 13, 223. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Ding, L.; Yuan, H.; Zhao, G.; Yang, X.; Wu, Y. A review of sensors for classification and subtype discrimination of cancer: Insights into circulating tumor cells and tumor-derived extracellular vesicles. Anal. Chim. Acta 2023, 1244, 340703. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, Y.; Kimura, T.; Sugata, K.; Enomoto, T.; Asakawa, A.; Kubota, H.; Ikeda, M.; Ohmiya, Y. Multicolor Luciferase Assay System: One-Step Monitoring of Multiple Gene Expressions with a Single Substrate. BioTechniques 2005, 38, 891. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Kong, H.; Gong, X.; Zhang, S.; Zhang, X. Multicolor imaging of cancer cells with fluorophore-tagged aptamers for single cell typing. Anal. Chem. 2014, 86, 8261. [Google Scholar] [CrossRef] [PubMed]
- ISO 24421:2023; Biotechnology–Minimum Requirements for Optical Signal Measurements in Photometric Methods for Biological Samples. 1st ed. International Organization for Standardization: Geneva, Switzerland, 2023.
Voltage (V) | Current (nA) | Standard Deviation (nA) |
---|---|---|
−700 | 6.19 × 10−4 | 5.40 × 10−4 |
−800 | 1.08 × 10−3 | 1.25 × 10−3 |
−900 | 1.54 × 10−2 | 9.05 × 10−3 |
−1000 * | 1.88 × 10−2 | 1.84 × 10−3 |
−1200 | 8.10 × 10−2 | 8.90 × 10−3 |
−700 V | −1000 V | ||||||
10−8 C/Pulse | 10−10 C/Pulse | 10−8 C/Pulse | 10−10 C/Pulse | ||||
200/1000 | 0.97 | 50/200 | 0.87 | 200/1000 | 0.94 | 50/200 | 0.89 |
10/200 | 1.15 | 50/1000 | 0.82 | 10/200 | 1.18 | ||
2/200 | 1.71 | 2/200 | 1.75 | ||||
−800 V | −1200 V | ||||||
10−8 C/Pulse | 10−10 C/Pulse | 10−8 C/Pulse | 10−10 C/Pulse | ||||
200/1000 | 0.93 | 50/200 | 0.87 | 200/1000 | 0.96 | 50/200 | 0.87 |
50/1000 | 0.82 | 10/200 | 1.15 | 50/1000 | 0.83 | 10/200 | 1.14 |
2/200 | 1.766 | 2/200 | 1.71 | ||||
−900 V | Average | ||||||
10−8 C/Pulse | 10−10 C/Pulse | 10−8 C/Pulse | 10−10 C/Pulse | ||||
200/1000 | 0.94 | 50/200 | 0.88 | 200/1000 | 0.95 (0.77%) | 50/200 | 0.87 (0.51%) |
50/1000 | 0.82 | 10/200 | 1.16 | 50/1000 | 0.83 (0.45%) | 10/200 | 1.16 (0.59%) |
2/200 | 1.76 | 2/200 | 1.74 (0.69%) |
Condition (V) | Upper Limit (mA) | Lower Limit (mA) |
---|---|---|
−700 | 4.45 × 10−3 | 8.84 × 10−8 |
−800 | 4.23 × 10−2 | 1.50 × 10−7 |
−900 | 1.14 × 10−2 | 5.47 × 10−7 |
−1000 | 1.03 × 10−2 | 6.35 × 10−8 |
−1200 | 1.46 × 10−2 | 4.05 × 10−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsumoto, T.; Masuda, A.; Tanabe, M.; Manabe, S.; Harano, H.; Niwa, K. Development of an Integrating Sphere-Based Wide-Range Light Source System for the Linearity Evaluation of a Photodetector Used in Radiation Detection and Bioanalysis Instruments. Sensors 2024, 24, 7544. https://doi.org/10.3390/s24237544
Matsumoto T, Masuda A, Tanabe M, Manabe S, Harano H, Niwa K. Development of an Integrating Sphere-Based Wide-Range Light Source System for the Linearity Evaluation of a Photodetector Used in Radiation Detection and Bioanalysis Instruments. Sensors. 2024; 24(23):7544. https://doi.org/10.3390/s24237544
Chicago/Turabian StyleMatsumoto, Tetsuro, Akihiko Masuda, Minoru Tanabe, Seiya Manabe, Hideki Harano, and Kazuki Niwa. 2024. "Development of an Integrating Sphere-Based Wide-Range Light Source System for the Linearity Evaluation of a Photodetector Used in Radiation Detection and Bioanalysis Instruments" Sensors 24, no. 23: 7544. https://doi.org/10.3390/s24237544
APA StyleMatsumoto, T., Masuda, A., Tanabe, M., Manabe, S., Harano, H., & Niwa, K. (2024). Development of an Integrating Sphere-Based Wide-Range Light Source System for the Linearity Evaluation of a Photodetector Used in Radiation Detection and Bioanalysis Instruments. Sensors, 24(23), 7544. https://doi.org/10.3390/s24237544