Research on Computing Resource Measurement and Routing Methods in Software Defined Computing First Network
Abstract
:1. Introduction
- (1)
- Proposes a dynamic-static integrated computing resource measurement modeling mechanism.
- (2)
- Proposes an RL-based proactive computing routing algorithm in the SD-CFN environment.
2. Related Work
3. DCRMM
3.1. Calculating the Basic Score
3.2. Segmenting the Basic Score
- Inputs: Input the dataset ( represents the set of all basic scores) and the maximum number of iterations are provided.
- Initialization: Define the number of clusters K (In this article, K = 3), and initialize the cluster centroids . The initial cluster of centroids can be randomly chosen.
- Assignment: For each data point , calculate its distance to each cluster centroid , typically using the Euclidean distance measured by the formula:
- Update Centroids: For each cluster j, calculate the new cluster center as the mean of all data points in that cluster:
- Convergence Check: Usually, K-means iterates until a stopping condition is met, such as when the cluster centers no longer undergo significant changes (or changes are below a certain convergence threshold ), or when the maximum number of iterations is reached. This can be expressed as:
- Outputs: The final result of the K-Means algorithm includes the ultimate cluster centers and the set of data points assigned to each cluster .
3.3. Matching the Cluster
3.4. Selecting a Computing Node
4. RSCR
4.1. Overview
4.2. Architecture
5. SD-CFN Routing
5.1. Reinforcement Learning Agent
5.2. Routing Algorithm
Algorithm 1: SD-CFN Routing: RSCR |
6. Results and Analysis
6.1. Test Environment
6.2. Traffic Generation
6.3. Parameters Setup
6.4. Results and Analysis
7. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tian, L.; Yang, M.Z.; Wang, S.G. An overview of compute first networking. Int. J. Web Grid Serv. 2021, 17, 81–97. [Google Scholar] [CrossRef]
- Tang, X.Y.; Cao, C.; Wang, Y.X.; Zhang, S.; Liu, Y.; Li, M.X.; He, T. Computing Power Network: The Architecture of Convergence of Computing and Networking towards 6G Requirement. China Commun. 2021, 18, 175–185. [Google Scholar] [CrossRef]
- Yu, C.D.; Xia, G.M.; Wang, Z.H.; Soc, I.C. Trust Evaluation of Computing Power Network Based on Improved Particle Swarm Neural Network. In Proceedings of the 17th IEEE International Conference on Mobility, Sensing and Networking (MSN), Exeter, UK, 13–15 December 2021; pp. 718–725. [Google Scholar] [CrossRef]
- Institute, C.U.R. China Unicom Computing First Network White Paper. Report, 2019. Available online: http://www.bomeimedia.com/China-unicom/white_paper/20191101-06.pdf (accessed on 5 December 2023).
- Król, M.; Mastorakis, S.; Oran, D.; Kutscher, D. Compute first networking: Distributed computing meets icn. In Proceedings of the 6th ACM Conference on Information-Centric Networking, Macao, China, 24–26 September 2019; pp. 67–77. [Google Scholar]
- Xu, Q.; Zhang, Y.; Wu, K.; Wang, J.; Lu, K. Evaluating and boosting reinforcement learning for intra-domain routing. In Proceedings of the 2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), Monterey, CA, USA, 4–7 November 2019; pp. 265–273. [Google Scholar]
- Moy, J. OSPF Version 2. Report 2070-1721, 1997. Available online: https://www.rfc-editor.org/rfc/rfc2178.html (accessed on 5 December 2023).
- Bernard, F. Internet traffic engineering by optimizing OSPF weights. In Proceedings of the IEEE INFOCOM 2000, Conference on Computer Communications, Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No. 00CH37064), Tel Aviv, Israel, 26–30 March 2000. [Google Scholar]
- Chen, Y.R.; Rezapour, A.; Tzeng, W.G.; Tsai, S.C. RL-Routing: An SDN Routing Algorithm Based on Deep Reinforcement Learning. IEEE Trans. Netw. Sci. Eng. 2020, 7, 3185–3199. [Google Scholar] [CrossRef]
- Oliveira, C.A.; Pardalos, P.M. Mathematical Aspects of Network Routing Optimization; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Nayak, P.; Swetha, G.; Gupta, S.; Madhavi, K. Routing in wireless sensor networks using machine learning techniques: Challenges and opportunities. Measurement 2021, 178, 108974. [Google Scholar] [CrossRef]
- Jacob, D.I.J.; Darney, D.P.E. Artificial bee colony optimization algorithm for enhancing routing in wireless networks. J. Artif. Intell. Capsul. Netw. 2021, 3, 62–71. [Google Scholar] [CrossRef]
- Jiang, W. Graph-based deep learning for communication networks: A survey. Comput. Commun. 2022, 185, 40–54. [Google Scholar] [CrossRef]
- Xin, L.; Song, W.; Cao, Z.; Zhang, J. Step-wise deep learning models for solving routing problems. IEEE Trans. Ind. Informatics 2020, 17, 4861–4871. [Google Scholar] [CrossRef]
- Guo, Y.; Luo, H.; Wang, Z.; Yin, X.; Wu, J. Routing optimization with path cardinality constraints in a hybrid SDN. Comput. Commun. 2021, 165, 112–121. [Google Scholar] [CrossRef]
- Bagaa, M.; Dutra, D.L.C.; Taleb, T.; Samdanis, K. On SDN-driven network optimization and QoS aware routing using multiple paths. IEEE Trans. Wirel. Commun. 2020, 19, 4700–4714. [Google Scholar] [CrossRef]
- Tu, Z.; Zhou, H.; Li, K.; Li, G.; Shen, Q. A routing optimization method for software-defined SGIN based on deep reinforcement learning. In Proceedings of the 2019 IEEE Globecom Workshops (GC Wkshps), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar]
- He, Q.; Wang, Y.; Wang, X.; Xu, W.; Li, F.; Yang, K.; Ma, L. Routing optimization with deep reinforcement learning in knowledge defined networking. IEEE Trans. Mob. Comput. 2023, 23, 1444–1455. [Google Scholar] [CrossRef]
- Phan, T.; Feld, S.; Linnhoff-Popien, C. Artificial intelligence—The new revolutionary evolution. Digit. Welt 2020, 4, 7–8. [Google Scholar] [CrossRef]
- Boyan, J.; Littman, M. Packet routing in dynamically changing networks: A reinforcement learning approach. In Proceedings of the Advances in Neural Information Processing Systems, Denver, CO, USA, 29 November–2 December 1993; Volume 6. [Google Scholar]
- Lin, S.C.; Akyildiz, I.F.; Wang, P.; Luo, M. QoS-aware adaptive routing in multi-layer hierarchical software defined networks: A reinforcement learning approach. In Proceedings of the 2016 IEEE International Conference on Services Computing (SCC), San Francisco, CA, USA, 27 June–2 July 2016; pp. 25–33. [Google Scholar]
- Hassas Yeganeh, S.; Ganjali, Y. Kandoo: A framework for efficient and scalable offloading of control applications. In Proceedings of the First Workshop on Hot Topics in Software Defined Networks, Helsinki Finland, 13 August 2012; pp. 19–24. [Google Scholar]
- McCauley, J.; Panda, A.; Casado, M.; Koponen, T.; Shenker, S. Extending SDN to large-scale networks. Open Netw. Summit 2013, 1–2. [Google Scholar]
- Rischke, J.; Sossalla, P.; Salah, H.; Fitzek, F.H.; Reisslein, M. QR-SDN: Towards reinforcement learning states, actions, and rewards for direct flow routing in software-defined networks. IEEE Access 2020, 8, 174773–174791. [Google Scholar] [CrossRef]
- Hassen, H.; Meherzi, S.; Jemaa, Z.B. ϵ-QLMR: ϵ-greedy based Q-Learning algorithm for Multipath Routing in SDN networks. In Proceedings of the 2023 International Wireless Communications and Mobile Computing (IWCMC), Marrakesh, Morocco, 19–23 June 2023; pp. 234–239. [Google Scholar]
- Casas-Velasco, D.M.; Rendon, O.M.C.; da Fonseca, N.L. Intelligent routing based on reinforcement learning for software-defined networking. IEEE Trans. Netw. Serv. Manag. 2020, 18, 870–881. [Google Scholar] [CrossRef]
- Casas-Velasco, D.M.; Rendon, O.M.C.; Fonseca, N.L.S.d. DRSIR: A Deep Reinforcement Learning Approach for Routing in Software-Defined Networking. IEEE Trans. Netw. Serv. Manag. 2022, 19, 4807–4820. [Google Scholar] [CrossRef]
- Yu, C.; Lan, J.; Guo, Z.; Hu, Y. DROM: Optimizing the routing in software-defined networks with deep reinforcement learning. IEEE Access 2018, 6, 64533–64539. [Google Scholar] [CrossRef]
- Zhao, C.; Ye, M.; Xue, X.; Lv, J.; Jiang, Q.; Wang, Y. DRL-M4MR: An intelligent multicast routing approach based on DQN deep reinforcement learning in SDN. Phys. Commun. 2022, 55, 101919. [Google Scholar] [CrossRef]
- Zhu, Y.; Tian, D.; Yan, F. Effectiveness of entropy weight method in decision-making. Math. Probl. Eng. 2020, 2020, 1–5. [Google Scholar] [CrossRef]
- Taheriyoun, M.; Karamouz, M.; Baghvand, A. Development of an entropy-based fuzzy eutrophication index for reservoir water quality evaluation. J. Environ. Health Sci. Eng. 2010, 7, 1–14. [Google Scholar]
- Carbó-Dorca, R.; Besalú, E. Geometry of n-dimensional Euclidean space Gaussian enfoldments. J. Math. Chem. 2011, 49, 2244–2249. [Google Scholar] [CrossRef]
- Clark, D.D.; Partridge, C.; Ramming, J.C.; Wroclawski, J.T. A knowledge plane for the internet. In Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, Karlsruhe, Germany, 25–29 August 2003; pp. 3–10. [Google Scholar]
- Mestres, A.; Rodriguez-Natal, A.; Carner, J.; Barlet-Ros, P.; Alarcón, E.; Solé, M.; Muntés-Mulero, V.; Meyer, D.; Barkai, S.; Hibbett, M.J. Knowledge-defined networking. ACM SIGCOMM Comput. Commun. Rev. 2017, 47, 2–10. [Google Scholar] [CrossRef]
- Black, U.D. IP Routing Protocols: RIP, OSPF, BGP, PNNI, and Cisco Routing Protocols; Prentice Hall Professional: Hoboken, NJ, USA, 2000. [Google Scholar]
- Aldabbas, H. Efficient bandwidth allocation in SDN-based peer-to-peer data streaming using machine learning algorithm. J. Supercomput. 2023, 79, 6802–6824. [Google Scholar] [CrossRef]
- Martín, I.; Troia, S.; Hernández, J.A.; Rodríguez, A.; Musumeci, F.; Maier, G.; Alvizu, R.; de Dios, O.G. Machine learning-based routing and wavelength assignment in software-defined optical networks. IEEE Trans. Netw. Serv. Manag. 2019, 16, 871–883. [Google Scholar] [CrossRef]
- Samadi, R.; Nazari, A.; Seitz, J. Intelligent energy-aware routing protocol in mobile IoT networks based on SDN. IEEE Trans. Green Commun. Netw. 2023, 7, 2093–2103. [Google Scholar] [CrossRef]
- Feng, H.; Wang, J.; Fang, Z.; Chen, J.; Do, D.T. Evaluating AoI-Centric HARQ Protocols for UAV Networks. IEEE Trans. Commun. 2023, 72, 288–301. [Google Scholar] [CrossRef]
- Wang, J.; Jiao, Z.; Chen, J.; Hou, X.; Yang, T.; Lan, D. Blockchain-Aided Secure Access Control for UAV Computing Networks. IEEE Trans. Netw. Sci. Eng. 2023, 1–14. [Google Scholar] [CrossRef]
- ONF. SDN Architecture-Issue 1.1-ONF TR-521. 2019. Available online: https://opennetworking.org/wp-content/uploads/2014/10/TR-521_SDN_Architecture_issue_1.1.pdf (accessed on 5 December 2023).
- Liao, L.; Leung, V.C. LLDP based link latency monitoring in software defined networks. In Proceedings of the 2016 12th International Conference on Network and Service Management (CNSM), Montreal, QC, Canada, 31 October–4 November 2016; pp. 330–335. [Google Scholar]
- Shu, Z.; Wan, J.; Lin, J.; Wang, S.; Li, D.; Rho, S.; Yang, C. Traffic engineering in software-defined networking: Measurement and management. IEEE Access 2016, 4, 3246–3256. [Google Scholar] [CrossRef]
- Ryu application API. Website, 2023. Available online: https://ryu.readthedocs.io/en/latest/ryu_app_api.html (accessed on 5 December 2023).
- Achleitner, S.; Bartolini, N.; He, T.; La Porta, T.; Tootaghaj, D.Z. Fast network configuration in software defined networking. IEEE Trans. Netw. Serv. Manag. 2018, 15, 1249–1263. [Google Scholar] [CrossRef]
- Mammeri, Z. Reinforcement learning based routing in networks: Review and classification of approaches. IEEE Access 2019, 7, 55916–55950. [Google Scholar] [CrossRef]
- Tijsma, A.D.; Drugan, M.M.; Wiering, M.A. Comparing exploration strategies for Q-learning in random stochastic mazes. In Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece, 6–9 December 2016; pp. 1–8. [Google Scholar]
- Uhlig, S.; Quoitin, B.; Lepropre, J.; Balon, S. Providing public intradomain traffic matrices to the research community. ACM SIGCOMM Comput. Commun. Rev. 2006, 36, 83–86. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, X.; Ren, S.; Wang, C.; Wang, J. Research on Computing Resource Measurement and Routing Methods in Software Defined Computing First Network. Sensors 2024, 24, 1086. https://doi.org/10.3390/s24041086
Gong X, Ren S, Wang C, Wang J. Research on Computing Resource Measurement and Routing Methods in Software Defined Computing First Network. Sensors. 2024; 24(4):1086. https://doi.org/10.3390/s24041086
Chicago/Turabian StyleGong, Xiaomin, Shuangyin Ren, Chunjiang Wang, and Jingchao Wang. 2024. "Research on Computing Resource Measurement and Routing Methods in Software Defined Computing First Network" Sensors 24, no. 4: 1086. https://doi.org/10.3390/s24041086
APA StyleGong, X., Ren, S., Wang, C., & Wang, J. (2024). Research on Computing Resource Measurement and Routing Methods in Software Defined Computing First Network. Sensors, 24(4), 1086. https://doi.org/10.3390/s24041086