Fourier Ptychographic Neural Network Combined with Zernike Aberration Recovery and Wirtinger Flow Optimization
Abstract
:1. Introduction
2. Methods
2.1. Fourier Ptychographic Microscope
2.2. Imaging Model and Reconstruction Model
2.2.1. Imaging Model
2.2.2. Reconstruction Model
2.3. Integrated Neural Network Based on Improved Wirtinger Flow
2.3.1. Network Architecture
2.3.2. Alternating Update Mechanism
2.3.3. Optical Aberration Processing Mechanism
3. Experimental Results
3.1. Experimental System Setup
3.2. Comparative Experiments with Simulated Datasets
3.2.1. Correction Performance for Different Defocus Planes
3.2.2. Comparison of the Results of Different Methods on the Simulated Dataset
3.3. Comparative Experiments with a Real Dataset
3.3.1. Correction Performance for Different Defocus Planes
3.3.2. Comparison of the Results of Different Methods on a Real Dataset
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, G.; Horstmeyer, R.; Yang, C. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics 2013, 7, 739–745. [Google Scholar] [CrossRef]
- Yin, W.; Zhong, J.; Feng, S.; Tao, T.; Han, J.; Huang, L.; Chen, Q.; Zuo, C. Composite deep learning framework for absolute 3D shape measurement based on single fringe phase retrieval and speckle correlation. J. Phys. Photonics 2020, 2, 045009. [Google Scholar] [CrossRef]
- Candes, E.J.; Eldar, Y.C.; Strohmer, T.; Voroninski, V. Phase retrieval via matrix completion. SIAM Rev. 2015, 57, 225–251. [Google Scholar] [CrossRef]
- Fienup, J.R. Reconstruction of an object from the modulus of its Fourier transform. Opt. Lett. 1978, 3, 27–29. [Google Scholar] [CrossRef]
- Fienup, J.R. Phase retrieval algorithms: A comparison. Opt. Lett. 1982, 21, 2758–2769. [Google Scholar] [CrossRef]
- Marrison, J.; Räty, L.; Marriott, P.; O’Toole, P. Ptychography—A label free, high-contrast imaging technique for live cells using quantitative phase information. Sci. Rep. 2013, 3, 2369. [Google Scholar] [CrossRef]
- Alexandrov, S.A.; Hillman, T.R.; Gutzler, T.; Sampson, D.D. Synthetic Aperture Fourier Holographic Optical Microscopy. Phys. Rev. Lett. 2006, 97, 168102. [Google Scholar] [CrossRef] [PubMed]
- Booth, M.J. Adaptive optics in microscopy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 2829–2843. [Google Scholar] [CrossRef] [PubMed]
- Ou, X.; Zheng, G.; Yang, C. Embedded pupil function recovery for Fourier ptychographic microscopy. Opt. Express 2014, 22, 4960. [Google Scholar] [CrossRef] [PubMed]
- Maiden, A.; Johnson, D.; Li, P. Further improvements to the ptychographical iterative engine. Optica 2017, 4, 736. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Jiang, S.; Dixit, K.; Song, P.; Zhang, X.; Ji, X.; Li, X. Neural network model assisted Fourier ptychography with Zernike aberration recovery and total variation constraint. J. Biomed. Opt. 2021, 26, 036502. [Google Scholar] [CrossRef]
- Zhang, J.; Tao, X.; Yang, L.; Wu, R.; Sun, P.; Wang, C.; Zheng, Z. Forward imaging neural network with correction of positional misalignment for Fourier ptychographic microscopy. Opt. Express 2020, 28, 23164–23175. [Google Scholar] [CrossRef]
- Hu, L. Research on Aberration Correction Method Based on Wavefront Detection and Deep Learning in Microscopic System. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2021. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, T.; Li, J.; Zhang, Y.; Jiang, S.; Chen, Y.; Zhang, J. Physics-based learning with channel attention for Fourier ptychographic microscopy. J. Biophotonics 2022, 15, e202100296. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, X.; Tian, Z.; Liu, S. Neural network model with positional deviation correction for Fourier ptychography. J. Soc. Inf. Disp. 2021, 29, 749–757. [Google Scholar] [CrossRef]
- Xiao, W.; Xin, L.; Cao, R.; Wu, X.; Tian, R.; Che, L.; Sun, L.; Ferraro, P.; Pan, F. Sensing morphogenesis of bone cells under microfluidic shear stress by holographic microscopy and automatic aberration compensation with deep learning. Lab Chip 2021, 21, 1385–1394. [Google Scholar] [CrossRef]
- Xiaoze, O.; Roarke, H.; Guoan, Z.; Changhuei, Y. High numerical aperture Fourier ptychography: Principle, implementation and characterization. Opt. Express 2015, 23, 3472–3491. [Google Scholar]
- Wu, R.; Luo, J.; Li, J.; Chen, H.; Zhen, J.; Zhu, S.; Luo, Z.; Wu, Y. Adaptive correction method of hybrid aberrations in Fourier ptychographic microscopy. J. Biomed. Opt. 2023, 28, 036006. [Google Scholar] [CrossRef]
- Xiang, M.; Pan, A.; Liu, J.; Xi, T.; Guo, X.; Liu, F.; Shao, X. Phase Diversity-Based Fourier Ptychography for Varying Aberration Correction. Front. Phys. 2022, 10, 129. [Google Scholar] [CrossRef]
- Gonsalves, R.A. Phase retrieval and diversity in adaptive optics. Opt. Eng. 1982, 21, 829–832. [Google Scholar] [CrossRef]
- Wang, X.; Piao, Y.; Jin, Y.; Li, J.; Lin, Z.; Cui, J.; Xu, T. Fourier Ptychographic Reconstruction Method of Self-Training Physical Model. Appl. Sci. 2023, 13, 3590. [Google Scholar] [CrossRef]
- Wang, X.; Piao, Y.; Yu, J.; Li, J.; Sun, H.; Jin, Y.; Liu, L.; Xu, T. Deep Multi-Feature Transfer Network for Fourier Ptychographic Microscopy Imaging Reconstruction. Sensors 2022, 22, 1237. [Google Scholar] [CrossRef]
- Bian, L.; Suo, J.; Zheng, G.; Guo, K.; Chen, F.; Dai, Q. Fourier ptychographic reconstruction using Wirtinger flow optimization. Opt. Express 2015, 23, 4856–4866. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhong, Z.; Shen, T.; Lin, Z. Convolutional neural networks with alternately updated clique. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2413–2422. [Google Scholar]
- Thibos, L.N.; Applegate, R.A.; Schwiegerling, J.T.; Webb, R. Standards for reporting the optical aberrations of eyes. J. Refract. Surg. 2002, 18, S652–S660. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Guo, K.; Liao, J.; Zheng, G. Solving Fourier ptychographic imaging problems via neural network modeling and TensorFlow. Biomed. Opt. Express 2018, 9, 3306–3319. [Google Scholar] [CrossRef] [PubMed]
Defocus Planes | EPRY PSNR (dB)/SSIM | EPRY Max/Min Value | INNM PSNR (dB)/SSIM | INNM Max/Min Value | INN_IWF PSNR (dB)/SSIM | INN_IWF Max/Min Value | |
---|---|---|---|---|---|---|---|
Amplitude | 25 µm | 18.04/0.6054 | 18.76/0.6172 17.30/0.5926 | 26.40/0.8670 | 27.5/0.8370 25.3/0.8972 | 28.02/0.9214 | 28.29/0.9216 27.75/0.9182 |
50 µm | 17.89/0.5576 | 18.08/0.5676 17.72/0.5476 | 22.71/0.8937 | 22.71/0.8937 21.92/0.8667 | 24.97/0.9182 | 24.97/0.9182 24.26/0.9126 | |
75 µm | 17.81/0.5003 | 18.01/0.5546 17.60/0.4462 | 21.22/0.8622 | 22.21/0.8698 20.42/0.8544 | 23.34/0.9035 | 24.34/0.9035 22.34/0.9002 | |
Phase | 25 µm | 14.51/0.5055 | 14.99/0.5676 14.02/0.4432 | 22.02/0.8602 | 23.02/0.8625 21.04/0.8580 | 23.56/0.8776 | 23.56/0.8776 23.42/0.8726 |
50 µm | 14.00/0.4521 | 14.16/0.4821 13.82/0.4221 | 21.82/0.8529 | 21.82/0.8529 20.52/0.8422 | 22.73/0.8699 | 22.73/0.8699 22.36/0.8662 | |
75 µm | 13.26/0.4024 | 13.48/0.4455 13.02/0.3592 | 18.66/0.7928 | 19.69/0.7921 17.63/0.7935 | 21.67/0.8539 | 21.85/0.8639 21.49/0.8429 |
EPRY PSNR (dB)/SSIM | Jiang et al. [26] PSNR (dB)/SSIM | Jiang et al. [26] Max/Min Value | INNM PSNR (dB)/SSIM | INN_IWF PSNR (dB)/SSIM | |
---|---|---|---|---|---|
Amplitude | 17.89/0.5576 | 21.88/0.7360 | 21.97/0.7370 21.79/0.7270 | 22.71/0.8937 | 24.97/0.9182 |
Phase | 14.00/0.4521 | 17.01/0.6900 | 17.07/0.6903 16.94/0.6988 | 21.82/0.8529 | 22.73/0.8699 |
Defocus Planes | EPRY PSNR (dB)/SSIM | EPRY Max/Min Value | INNM PSNR (dB)/SSIM | INNM Max/Min Value | INN_IWF PSNR (dB)/SSIM | INN_IWF Max/Min Value | |
---|---|---|---|---|---|---|---|
Amplitude | 25 µm | 21.76/0.7023 | 24.76/0.7023 20.76/0.6626 | 27.29/0.9621 | 27.60/0.9657 26.98/0.9585 | 33.36/0.9838 | 34.36/0.9840 32.46/0.9752 |
50 µm | 20.08/0.6588 | 21.10/0.6636 20.02/0.6586 | 22.63/0.9008 | 23.12/0.9108 22.16/0.8902 | 26.23/0.9506 | 27.46/0.9683 25.96/0.9489 | |
75 µm | 19.29/0.6182 | 20.01/0.6282 19.01/0.6084 | 20.21/0.8254 | 21.04/0.8355 20.18/0.8153 | 21.57/0.8955 | 21.77/0.8977 21.30/0.8923 | |
Phase | 25 µm | 16.52/0.6371 | 17.42/0.6381 15.62/0.6321 | 36.14/0.9818 | 36.43/0.9837 35.85/0.9799 | 40.52/0.9916 | 41.15/0.9918 39.89/0.9901 |
50 µm | 12.73/0.5167 | 13.72/0.5203 11.62/0.4960 | 29.32/0.9443 | 29.69/0.9447 28.99/0.9440 | 37.64/0.9871 | 37.84/0.9872 37.44/0.9868 | |
75 µm | 8.54/0.3893 | 9.85/0.3996 8.32/0.3792 | 20.32/0.9309 | 20.95/0.9329 19.79/0.9288 | 34.02/0.9679 | 34.19/0.9743 33.80/0.9610 |
EPRY PSNR (dB)/SSIM | Jiang et al. [26] PSNR (dB)/SSIM | INNM PSNR (dB)/SSIM | INN_IWF PSNR (dB)/SSIM | ||
---|---|---|---|---|---|
One | Amplitude | 20.08/0.6588 | 12.34/0.7732 | 22.63/0.9008 | 26.23/0.9506 |
Phase | 12.73/0.5167 | 15.83/0.7298 | 29.32/0.9443 | 37.64/0.9871 | |
Two | Amplitude | 22.15/0.7915 | 22.20/0.8784 | 29.89/0.9385 | 31.61/0.9690 |
Phase | 11.28/0.5481 | 10.57/0.5301 | 30.57/0.9297 | 33.61/0.9724 | |
Three | Amplitude | 20.01/0.6948 | 20.56/0.7687 | 22.11/0.8647 | 26.09/0.9335 |
Phase | 9.56/0.4883 | 13.22/0.6115 | 12.70/0.6383 | 25.86/0.9176 | |
Four | Amplitude | 22.70/0.8253 | 18.85/0.8183 | 19.98/0.7986 | 22.80/0.9246 |
Phase | 9.54/0.4568 | 9.89/0.5940 | 12.86/0.6086 | 21.09/0.8544 |
EPRY PSNR (dB)/SSIM Max/Min Value | Jiang et al. [26] PSNR (dB)/SSIM Max/Min Value | INNM PSNR (dB)/SSIM Max/Min Value | INN_IWF PSNR (dB)/SSIM Max/Min Value | ||
---|---|---|---|---|---|
One | Amplitude | 21.10/0.6636 20.02/0.6586 | 13.34/0.7743 11.32/0.7682 | 23.12/0.9108 22.16/0.8902 | 27.46/0.9683 25.96/0.9489 |
Phase | 13.72/0.5203 11.62/0.4960 | 16.12/0.7328 15.54/0.7268 | 29.69/0.9447 28.99/0.9440 | 37.84/0.9872 37.44/0.9868 | |
Two | Amplitude | 22.15/0.7916 22.10/0.7901 | 22.26/0.8884 22.12/0.8682 | 29.99/0.9398 29.69/0.9372 | 33.29/0.9752 29.93/0.9629 |
Phase | 11.32/0.5483 11.25/0.5476 | 11.02/0.5408 10.57/0.5401 | 31.01/0.9299 30.12/0.9293 | 36.61/0.9793 30.62/0.9655 | |
Three | Amplitude | 20.80/0.6956 19.21/0.6946 | 20.90/0.7736 20.18/0.7636 | 22.21/0.8699 22.01/0.8595 | 26.29/0.9342 26.02/0.9330 |
Phase | 9.86/0.4896 9.24/0.4824 | 13.54/0.6215 12.90/0.6015 | 13.01/0.6434 12.39/0.6332 | 26.10/0.9207 25.53/0.9146 | |
Four | Amplitude | 22.74/0.8262 22.67/0.8221 | 19.30/0.8283 18.38/0.8083 | 20.01/0.7987 19.88/0.7985 | 22.96/0.9268 22.72/0.9246 |
Phase | 9.60/0.4589 9.42/0.4558 | 9.90/0.5946 9.86/0.5938 | 13.06/0.6099 12.67/0.6072 | 21.42/0.8568 21.02/0.8542 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Lin, Z.; Wang, Y.; Li, J.; Wang, X.; Wang, H. Fourier Ptychographic Neural Network Combined with Zernike Aberration Recovery and Wirtinger Flow Optimization. Sensors 2024, 24, 1448. https://doi.org/10.3390/s24051448
Wang X, Lin Z, Wang Y, Li J, Wang X, Wang H. Fourier Ptychographic Neural Network Combined with Zernike Aberration Recovery and Wirtinger Flow Optimization. Sensors. 2024; 24(5):1448. https://doi.org/10.3390/s24051448
Chicago/Turabian StyleWang, Xiaoli, Zechuan Lin, Yan Wang, Jie Li, Xinbo Wang, and Hao Wang. 2024. "Fourier Ptychographic Neural Network Combined with Zernike Aberration Recovery and Wirtinger Flow Optimization" Sensors 24, no. 5: 1448. https://doi.org/10.3390/s24051448
APA StyleWang, X., Lin, Z., Wang, Y., Li, J., Wang, X., & Wang, H. (2024). Fourier Ptychographic Neural Network Combined with Zernike Aberration Recovery and Wirtinger Flow Optimization. Sensors, 24(5), 1448. https://doi.org/10.3390/s24051448