Monitoring Disease Severity of Mild Cognitive Impairment from Single-Channel EEG Data Using Regression Analysis
Abstract
:1. Introduction
2. Method
2.1. Participants
2.2. Study Design
2.3. Collecting Data and Processing Event-Related Potentials
3. Multi-Trial Analysis
3.1. Extraction and Ranking of Features
3.2. Regression
4. Single-Trial Analysis
4.1. Feature Extraction
4.2. Deep Neural Regression and Bayesian Optimization
5. Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Russo, M.J.; Cohen, G.; Chrem Mendez, P.; Campos, J.; Martín, M.E.; Clarens, M.F.; Tapajoz, F.; Harris, P.; Sevlever, G.; Allegri, R.F. Utility of the Spanish version of the Everyday Cognition scale in the diagnosis of mild cognitive impairment and mild dementia in an older cohort from the Argentina-ADNI. Aging Clin. Exp. Res. 2018, 30, 1167–1176. [Google Scholar] [CrossRef]
- Tsai, C.-L.; Pai, M.-C.; Ukropec, J.; Ukropcová, B. The Role of Physical Fitness in the Neurocognitive Performance of Task Switching in Older Persons with Mild Cognitive Impairment. J. Alzheimer’s Dis. 2016, 53, 143–159. [Google Scholar] [CrossRef]
- Khatun, S.; Morshed, B.I.; Bidelman, G.M. Single channel EEG time-frequency features to detect Mild Cognitive Impairment. In Proceedings of the 2017 IEEE International Symposium on Medical Measurements and Applications, MeMeA 2017–Proceedings, Rochester, MN, USA, 7–10 May 2017. [Google Scholar]
- Roalf, D.R.; Rupert, P.; Mechanic-Hamilton, D.; Brennan, L.; Duda, J.E.; Weintraub, D.; Trojanowski, J.Q.; Wolk, D.; Moberg, P.J. Quantitative assessment of finger tapping characteristics in mild cognitive impairment, Alzheimer’s disease, and Parkinson’s disease. J. Neurol. 2018, 265, 1365–1375. [Google Scholar] [CrossRef]
- Maskill, L. Mild cognitive impairment: A quiet epidemic with occupation at its heart. Br. J. Occup. Ther. 2018, 81, 485–486. [Google Scholar] [CrossRef]
- Lin, J.S.; O’Connor, E.; Rossom, R.C.; Perdue, L.A.; Burda, B.U.; Thompson, M.; Eckstrom, E. Screening for Cognitive Impairment in Older Adults: An Evidence Update for the US Preventive Services Task Force. 2013. Available online: https://pubmed.ncbi.nlm.nih.gov/24354019/ (accessed on 1 November 2020).
- Tsoi, K.K.; Chan, J.Y.; Hirai, H.W.; Wong, A.; Mok, V.C.; Lam, L.C.; Kwok, T.C.; Wong, S.Y. Recall Tests Are Effective to Detect Mild Cognitive Impairment: A Systematic Review and Meta-analysis of 108 Diagnostic Studies. J. Am. Med. Dir. Assoc. 2017, 18, 807.e17–807.e29. [Google Scholar] [CrossRef]
- Roalf, D.R.; Moberg, P.J.; Xie, S.X.; Wolk, D.A.; Moelter, S.T.; Arnold, S.E. Comparative accuracies of two common screening instruments for classification of Alzheimer’s disease, mild cognitive impairment, and healthy aging. Alzheimer’s Dement. 2013, 9, 529–537. [Google Scholar] [CrossRef]
- Bennys, K.; Rondouin, G.; Vergnes, C.; Touchon, J. Diagnostic value of quantitative EEG in Alzheimer’s disease. Neurophysiol. Clin. 2001, 31, 153–160. [Google Scholar] [CrossRef]
- Kowalski, J.W.; Gawel, M.; Pfeffer, A.; Barcikowska, M. The diagnostic value of EEG in Alzheimer disease: Correlation with the severity of mental impairment. J. Clin. Neurophysiol. 2001, 18, 570–575. [Google Scholar] [CrossRef]
- Bennys, K.; Rondouin, G.; Vergnes, C.; Touchon, J. Quantitative EEG findings in different stages of Alzheimer’s disease. Neurophysiol. Clin. Clin. Neurophysiol. 2001, 23, 457–462. [Google Scholar]
- FFraga, J.; Falk, T.H.; Kanda, P.A.M.; Anghinah, R. Characterizing Alzheimer’s Disease Severity via Resting-Awake EEG Amplitude Modulation Analysis. PLoS One 2013, 8, e72240. [Google Scholar] [CrossRef]
- Brunovsky, M.; Matousek, M.; Edman, A.; Cervena, K.; Krajca, V. Objective assessment of the degree of dementia by means of EEG. Neuropsychobiology 2003, 48, 19–26. [Google Scholar] [CrossRef]
- Song, Y.; Zang, D.; Wang, Z.; Guo, J.; Gong, Z.; Yao, Y. Grand Total EEG Analyses: A Promising Method Predict The Severity of Cognitive Impairment in Alzheimer’s Disease. J. Neurol. Sci. 2014, 31, 40. [Google Scholar]
- Babiloni, C.; Lizio, R.; Marzano, N.; Capotosto, P.; Soricelli, A.; Triggiani, A.I.; Cordone, S.; Gesualdo, L.; Del Percio, C. Brain neural synchronization and functional coupling in Alzheimer’s disease as revealed by resting state EEG rhythms. Int. J. Psychophysiol. 2016, 103, 88–102. [Google Scholar] [CrossRef]
- Babiloni, C.; De Pandis, M.F.; Vecchio, F.; Buffo, P.; Sorpresi, F.; Frisoni, G.B.; Rossini, P.M. Cortical sources of resting state electroencephalographic rhythms in Parkinson’s disease related dementia and Alzheimer’s disease. Clin. Neurophysiol. 2011, 122, 2355–2364. [Google Scholar] [CrossRef]
- Polverino, P.; Ajčević, M.; Catalan, M.; Mazzon, G.; Bertolotti, C.; Manganotti, P. Brain oscillatory patterns in mild cognitive impairment due to Alzheimer’s and Parkinson’s disease: An exploratory high-density EEG study. Clin. Neurophysiol. 2022, 138, 1–8. [Google Scholar] [CrossRef]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Bidelman, G.M.; Lowther, J.E.; Tak, S.H.; Alain, C. Mild Cognitive Impairment Is Characterized by Deficient Brainstem and Cortical Representations of Speech. J. Neurosci. 2017, 37, 3610–3620. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool for Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Bidelman, G.M.; Moreno, S.; Alain, C. Tracing the emergence of categorical speech perception in the human auditory system. Neuroimage 2013, 79, 201–212. [Google Scholar] [CrossRef]
- Pisoni, D.B. Auditory and phonetic memory codes in the discrimination of consonants and vowels. Percept. Psychophys. 1973, 13, 253–260. [Google Scholar] [CrossRef]
- Karunathilake, I.D.; Dunlap, J.L.; Perera, J.; Presacco, A.; Decruy, L.; Anderson, S.; Kuchinsky, S.E.; Simon, J.Z. Effects of aging on cortical representations of continuous speech. J. Neurophysiol. 2023, 129, 1359–1377. [Google Scholar] [CrossRef]
- Bidelman, G.M.; Alain, C. Musical Training Orchestrates Coordinated Neuroplasticity in Auditory Brainstem and Cortex to Counteract Age-Related Declines in Categorical Vowel Perception. J. Neurosci. 2015, 35, 1240–1249. [Google Scholar] [CrossRef] [PubMed]
- Aiken, S.J.; Picton, T.W. Envelope and spectral frequency-following responses to vowel sounds. Hear. Res. 2008, 245, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Luck, S. An Introduction to the Event Related Potential Technique; MIT Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Krishnan, A.; Suresh, C.H.; Gandour, J.T. Tone language experience-dependent advantage in pitch representation in brainstem and auditory cortex is maintained under reverberation. Hear. Res. 2019, 377, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Musacchia, G.; Strait, D.; Kraus, N. Relationships between behavior, brainstem and cortical encoding of seen and heard speech in musicians and non-musicians. Hear. Res. 2008, 241, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Calderon, J.; Luck, S.J. ERPLAB: An open-source toolbox for the analysis of event-related potentials. Front. Hum. Neurosci. 2014, 8, 213. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Xiao, P.; Zhang, Z.G.; Mouraux, A.; Iannetti, G.D. Single-trial time-frequency analysis of electrocortical signals: Baseline correction and beyond. Neuroimage 2014, 84, 876–887. [Google Scholar] [CrossRef] [PubMed]
- Khatun, S.; Mahajan, R.; Morshed, B.I. Comparative Study of Wavelet-Based Unsupervised Ocular Artifact Removal Techniques for Single-Channel EEG Data. IEEE J. Transl. Eng. Heal. Med. 2016, 4, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Khatun, S.; Mahajan, R.; Morshed, B.I. Comparative analysis of wavelet-based approaches for reliable removal of ocular artifacts from single channel EEG. In Proceedings of the IEEE International Conference on Electro Information Technology, Dekalb, IL, USA, 21–23 May 2015. [Google Scholar]
- Bidelman, G.M. Towards an optimal paradigm for simultaneously recording cortical and brainstem auditory evoked potentials. J. Neurosci. Methods 2015, 241, 94–100. [Google Scholar] [CrossRef]
- Lister, J.J.; Bush, A.L.H.; Andel, R.; Matthews, C.; Morgan, D.; Edwards, J.D. Cortical auditory evoked responses of older adults with and without probable mild cognitive impairment. Clin. Neurophysiol. 2016, 127, 1279–1287. [Google Scholar] [CrossRef]
- Blankertz, B.; Lemm, S.; Treder, M.; Haufe, S.; Mueller, K.-R. Single-trial analysis and classification of ERP components—A tutorial. Neuroimage 2011, 56, 814–825. [Google Scholar] [CrossRef]
- Van der Hiele, K.; Vein, A.A.; Van Der Welle, A.; Van Der Grond, J.; Westendorp, R.G.J.; Bollen, E.L.E.M.; Van Buchem, M.A.; Van Dijk, J.G.; Middelkoop, H.A.M. EEG and MRI correlates of mild cognitive impairment and Alzheimer’s disease. Neurobiol. Aging 2007, 28, 1322–1329. [Google Scholar] [CrossRef] [PubMed]
- Tibshirani, R. Regression shrinkage and selection via the lasso: A retrospective. J. R. Stat. Soc. Ser. B Stat. Methodol. 2011, 73, 273–282. [Google Scholar] [CrossRef]
- Aurlien, H.; Gjerde, I.O.; Aarseth, J.H.; Eldøen, G.; Karlsen, B.; Skeidsvoll, H.; Gilhus, N.E. EEG background activity described by a large computerized database. Clin. Neurophysiol. 2004, 15, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Brochu, E.; Cora, V.M.; De Freitas, N. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv 2010, arXiv:1012.2599. [Google Scholar]
Kernel | SSE |
---|---|
Matern | 5.45 e−19 |
Radial Basis Function | 5.45 e−19 |
Rational Quadratic | 3.59 e−19 |
Exponential Sine-squared | 2.48 e0 |
Dot Product | 54.14 e0 |
Method | RMSE |
---|---|
Multivariate Regression (link function = logit) (MR) | 30.9 |
Ensemble Regression (ER) | 1.6 |
Support Vector Regression (SVR) | 0.27 |
Ridge Regression (RR) | 2.61 |
RMSE | MAE |
---|---|
2.76 | 1.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khatun, S.; Morshed, B.I.; Bidelman, G.M. Monitoring Disease Severity of Mild Cognitive Impairment from Single-Channel EEG Data Using Regression Analysis. Sensors 2024, 24, 1054. https://doi.org/10.3390/s24041054
Khatun S, Morshed BI, Bidelman GM. Monitoring Disease Severity of Mild Cognitive Impairment from Single-Channel EEG Data Using Regression Analysis. Sensors. 2024; 24(4):1054. https://doi.org/10.3390/s24041054
Chicago/Turabian StyleKhatun, Saleha, Bashir I. Morshed, and Gavin M. Bidelman. 2024. "Monitoring Disease Severity of Mild Cognitive Impairment from Single-Channel EEG Data Using Regression Analysis" Sensors 24, no. 4: 1054. https://doi.org/10.3390/s24041054
APA StyleKhatun, S., Morshed, B. I., & Bidelman, G. M. (2024). Monitoring Disease Severity of Mild Cognitive Impairment from Single-Channel EEG Data Using Regression Analysis. Sensors, 24(4), 1054. https://doi.org/10.3390/s24041054