A 5G NR FR2 Beamforming System with Integrated Transceiver Module
Abstract
:1. Introduction
2. A 28 GHz RF Beamforming System and Transceiver Module
2.1. Development of 28 GHz RF Beamforming System
2.2. Development of 28 GHz RF Transceiver Module
3. Fabrication and Measurement
3.1. Measurement of 28 GHz RF Beamforming System
3.2. Measurement of 28 GHz RF Transceiver Module
3.3. Measurement of 28 GHz Integrated RF Beamforming System and Transceiver Module
Real-Time Video Transmission Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rappaport, T.S.; Sun, S.; Mayzus, R.; Zhao, H.; Azar, Y.; Wang, K.; Wong, G.N.; Schulz, J.K.; Samimi, M.; Gutierrez, F. Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! IEEE Access 2013, 1, 335–349. [Google Scholar] [CrossRef]
- Sadhu, B.; Tousi, Y.; Hallin, J.; Sahl, S.; Reynolds, S.K.; Renstrom, O.; Sjogren, K.; Haapalahti, O.; Mazor, N.; Bokinge, B.; et al. A 28-GHz 32-element TRX phased-array IC with concurrent dual-polarized operation and orthogonal phase and gain control for 5G communications. IEEE J. Solid-State Circuits 2017, 52, 3373–3391. [Google Scholar] [CrossRef]
- Hong, W.; Jiang, Z.H.; Yu, C.; Zhou, J.; Chen, P.; Yu, Z.; Zhang, H.; Yang, B.; Pang, X.; Jiang, M.; et al. Multibeam Antenna Technologies for 5G Wireless Communications. IEEE Trans. Antennas Propag. 2017, 65, 6231–6249. [Google Scholar] [CrossRef]
- Kim, H.T.; Park, B.S.; Song, S.S.; Moon, T.S.; Kim, S.H.; Kim, J.M.; Chang, J.Y.; Ho, Y.C. A 28-GHz CMOS Direct Conversion Transceiver With Packaged 2 × 4 Antenna Array for 5G Cellular System. IEEE J. Solid-State Circuits 2018, 53, 1245–1259. [Google Scholar] [CrossRef]
- Yeh, Y.S.; Floyd, B.A. Multibeam Phased-Arrays Using Dual-Vector Distributed Beamforming: Architecture Overview and 28 GHz Transceiver Prototypes. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 5496–5509. [Google Scholar] [CrossRef]
- Yi, Y.; Zhao, D.; Zhang, J.; Gu, P.; Chai, Y.; Liu, H.; You, X. A 24–29.5-GHz Highly Linear Phased-Array Transceiver Front-End in 65-nm CMOS Supporting 800-MHz 64-QAM and 400-MHz 256-QAM for 5G New Radio. IEEE J. Solid-State Circuits 2022, 57, 2702–2718. [Google Scholar] [CrossRef]
- Wei, L.; Hu, R.Q.; Qian, Y.; Wu, G. Key elements to enable millimeter wave communications for 5G wireless systems. IEEE Wirel. Commun. 2014, 21, 136–143. [Google Scholar]
- Shahramian, S.; Holyoak, M.J.; Baeyens, Y. A 16-element W-band phased-array transceiver chipset with flip-chip PCB integrated antennas for multi-gigabit wireless data links. IEEE Trans. Microw. Theory Tech. 2018, 66, 3389–3402. [Google Scholar] [CrossRef]
- Tokgoz, K.K.; Maki, S.; Pang, J.; Nagashima, N.; Abdo, I.; Kawai, S.; Fujimura, T.; Kawano, Y.; Suzuki, T.; Iwai, T.; et al. A 120 Gb/s 16 QAM CMOS millimeter-wave wireless transceiver. In Proceedings of the IEEE International Solid-State Circuits Conference—(ISSCC), San Francisco, CA, USA, 11–15 February 2018; pp. 168–170. [Google Scholar]
- Ko, C.H.; Kanar, T.; Kamath, A.; Presti, C.; Khatri, H.; Shah, J.; Ghadiri-Sadrabadi, M.; Zihir, S.; Pornpromlikit, S.; Wong, W.T.; et al. A Highly Integrated 5G mm-Wave Phased Array System at N257/N261 bands with 54dBm Linear EIRP. In Proceedings of the 2023 53rd European Microwave Conference (EuMC), Berlin, Germany, 19–21 September 2023; pp. 782–785. [Google Scholar]
- Alhamed, A.; Gultepe, G.; Rebeiz, G.M. 64-Element 16–52-GHz Transmit and Receive Phased Arrays for Multiband 5G-NR FR2 Operation. IEEE Trans. Microw. Theory Tech. 2022, 71, 360–372. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, J.; Lan, J.; Yang, B.; Yu, Z. A High-Precision Hybrid Analog and Digital Beamforming Transceiver System for 5G Millimeter-Wave Communication. IEEE Access 2019, 7, 83012–83023. [Google Scholar] [CrossRef]
- Pang, J.; Wu, R.; Wang, Y.; Dome, M.; Kato, H.; Huang, H.; Narayanan, A.T.; Liu, H.; Liu, B.; Nakamura, T.; et al. A 28-GHz CMOS Phased-Array Transceiver Based on LO Phase-Shifting Architecture with Gain Invariant Phase Tuning for 5G New Radio. IEEE J. Solid-State Circuits 2019, 54, 1228–1242. [Google Scholar] [CrossRef]
- Hassan, O.; Mahmud, M.; Alhamed, A.; Rebeiz, G.M. A Wideband Ultra-Low Noise 15–55 GHz Dual-Beam Receive Phased-Array Beamformer with 2.9-4.2 dB NF. In Proceedings of the IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), Monterey, CA, USA, 16–18 October 2023; pp. 215–218. [Google Scholar]
- Abbasi MA, B.; Abbasi, Q.H. Development Challenges of Millimeter-Wave 5G Beamformers. In Wiley 5G Ref; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2020; pp. 1–25. [Google Scholar] [CrossRef]
- Pellerano, S.; Callender, S.; Shin, W.; Wang, Y.; Kundu, S.; Agrawal, A.; Sagazio, P.; Carlton, B.; Sheikh, F.; Amadjikpe, A.; et al. A scalable 71-to-76 GHz 64-element phased-array transceiver module with 2×2 direct-conversion IC in 22 nm FinFET CMOS technology. In Proceedings of the 2019 IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, CA, USA, 17–21 February 2019; pp. 174–176. [Google Scholar]
- Gu, X.; Valdes-Garcia, A.; Natarajan, A.; Sadhu, B.; Liu, D.; Reynolds, S.K. W-band scalable phased arrays for imaging and communications. IEEE Commun. Mag. 2015, 53, 196–204. [Google Scholar] [CrossRef]
- Kibaroglu, K.; Sayginer, M.; Rebeiz, G.M. A Low-Cost Scalable 32-Element 28-GHz Phased Array Transceiver for 5G Communication Links Based on a 2×2 Beamformer Flip-Chip Unit Cell. IEEE J. Solid-State Circuits 2018, 53, 1260–1274. [Google Scholar] [CrossRef]
- Wang, S.; Rebeiz, G.M. Dual-Band 28- and 39-GHz Phased Arrays for Multistandard 5G Applications. IEEE Trans. Microw. Theory Tech. 2023, 71, 339–349. [Google Scholar] [CrossRef]
- Sadhu, B.; Paidimarri, A.; Ferriss, M.; Yeck, M.; Gu, X.; Valdes-Garcia, A. A 128-element Dual-Polarized Software-Defined Phased Array Radio for mm-wave 5G Experimentation. In Proceedings of the 2nd ACM Workshop on Millimeter Wave Networks and Sensing Systems—mmNets ’18, New Delhi, India, 29 October 2018; pp. 21–25. [Google Scholar]
- Marinho, D.; Arruela, R.; Varum, T.; Matos, J.N. Software-Defined Radio Beamforming System for 5G/Radar Applications. Appl. Sci. 2020, 10, 7187. [Google Scholar] [CrossRef]
- Bagheri, A.; Karlsson, H.; Bencivenni, C.; Gustafsson, M.; Emanuelsson, T.; Hasselblad, M.; Glazunov, A.A. A 16 × 16 45° Slant-Polarized Gapwaveguide Phased Array With 65-dBm EIRP at 28 GHz. IEEE Trans. Antennas Propag. 2022, 71, 1319–1329. [Google Scholar] [CrossRef]
- Quadrelli, F.; Manente, D.; Seebacher, D.; Padovan, F.; Bassi, M.; Mazzanti, A.; Bevilacqua, A. A Broadband 22–31-GHz Bidirectional Image-Reject Up/Down Converter Module in 28-nm CMOS for 5G Communications. IEEE J. Solid-State Circuits 2022, 57, 1968–1981. [Google Scholar] [CrossRef]
- Park, D.W.; Gwag, G.H.; Oh, H.J.; Park, I.M.; Eo, Y. S28GHz RF transceiver module for 5G beamforming system. In Proceedings of the 2016 APMC Conference, New Delhi, India, 5–9 December 2016; pp. 1–4. [Google Scholar]
- Yang, B.; Yu, Z.; Lan, J.; Zhang, R.; Zhou, J.; Hong, W. Digital Beamforming-Based Massive MIMO Transceiver for 5G Millimeter-Wave Communications. IEEE Trans. Microw. Theory Tech. 2018, 66, 3403–3418. [Google Scholar] [CrossRef]
- Bhatta, A.; Park, J.; Baek, D.; Kim, J.G. A Multimode 28 GHz CMOS Fully Differential Beamforming IC for Phased Array Transceivers. Sensors 2023, 23, 6124. [Google Scholar] [CrossRef]
- Dunworth, J.D.; Homayoun, A.; Ku, B.; Ou, Y.; Chakraborty, K.; Liu, G.; Segoria, T.; Lerdworatawee, J.; Park, J.W.; Park, H.; et al. A 28GHz Bulk-CMOS dual-polarization phased-array transceiver with 24 channels for 5G user and basestation equipment. In Proceedings of the 2018 IEEE International Solid—State Circuits Conference—(ISSCC), San Francisco, CA, USA, 11–15 February 2018; pp. 70–72. [Google Scholar]
- Kibaroglu, K.; Sayginer, M.; Phelps, T.; Rebeiz, G.M. A 64-Element 28-GHz Phased-Array Transceiver With 52-dBm EIRP and 8-12-Gb/s 5G Link at 300 Meters Without Any Calibration. IEEE Trans. Microw. Theory Tech. 2018, 66, 5796–5811. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhatta, A.; Kamrojjaman, M.; Sim, S.; Kim, J.-G. A 5G NR FR2 Beamforming System with Integrated Transceiver Module. Sensors 2024, 24, 1983. https://doi.org/10.3390/s24061983
Bhatta A, Kamrojjaman M, Sim S, Kim J-G. A 5G NR FR2 Beamforming System with Integrated Transceiver Module. Sensors. 2024; 24(6):1983. https://doi.org/10.3390/s24061983
Chicago/Turabian StyleBhatta, Ayush, Md Kamrojjaman, Sanghoon Sim, and Jeong-Geun Kim. 2024. "A 5G NR FR2 Beamforming System with Integrated Transceiver Module" Sensors 24, no. 6: 1983. https://doi.org/10.3390/s24061983
APA StyleBhatta, A., Kamrojjaman, M., Sim, S., & Kim, J.-G. (2024). A 5G NR FR2 Beamforming System with Integrated Transceiver Module. Sensors, 24(6), 1983. https://doi.org/10.3390/s24061983