3D Digital Modeling of Dental Casts from Their 3D CT Images with Scatter and Beam-Hardening Correction
Abstract
:1. Introduction
2. Methods
2.1. Scatter Signal Estimation in the Projection Image
2.2. Combined Algorithm (Beam-Hardening and Scatter Artifact Reduction)
2.3. Evaluation Phantoms
3. Results
3.1. Scatter Artifact Correction
3.2. Combination of Beam-Hardening and Scatter Artifact Correction
3.3. 3D Modeling Error Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kulczyk, T.; Rychlik, M.; Lorkiewicz-Muszyńska, D.; Abreu-Głowacka, M.; Czajka-Jakubowska, A.; Przystańska, A. Computed Tomography versus Optical Scanning: A Comparison of Different Methods of 3D Data Acquisition for Tooth Replication. Biomed Res. Int. 2019, 2019, 4985121. [Google Scholar] [CrossRef]
- Mendricky, R.; Sobotka, J. Accuracy Comparison of the Optical 3d Scanner and CT Scanner. Manuf. Technol. 2020, 20, 791–801. [Google Scholar] [CrossRef]
- Jacobs, R.; Salmon, B.; Codari, M.; Hassan, B.; Bornstein, M.M. Cone Beam Computed Tomography in Implant Dentistry: Recommendations for Clinical Use. BMC Oral Health 2018, 18, 88. [Google Scholar] [CrossRef] [PubMed]
- Howe, R.P.; McNamara, J.A.; O’Connor, K.A. An Examination of Dental Crowding and Its Relationship to Tooth Size and Arch Dimension. Am. J. Orthod. 1983, 83, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Ritter, A.V.; Boushell, L.W.; Walter, R. Sturdevant’s Art and Science of Operative Dentistry; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780323478335. [Google Scholar]
- Li, Y.; Yu, Y.; Feng, Y.; Liu, W. Predictable Digital Restorative Workflow for Minimally Invasive Esthetic Rehabilitation Utilizing a Virtual Patient Model with Global Diagnosis Principle. J. Esthet. Restor. Dent. 2022, 34, 769–775. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.H.; Hegazy, M.A.A.; Cho, M.H.; Lee, S.Y. Cone-Beam Angle Dependency of 3D Models Computed from Cone-Beam CT Images. Sensors 2022, 22, 1253. [Google Scholar] [CrossRef]
- Fragnaud, C.; Remacha, C.; Betancur, J.; Roux, S. CAD-Based x-Ray CT Calibration and Error Compensation. Meas. Sci. Technol. 2022, 33, 065024. [Google Scholar] [CrossRef]
- Yang, C.C. Characterization of Scattered X-Ray Photons in Dental Cone-Beam Computed Tomography. PLoS ONE 2016, 11, e0149904. [Google Scholar] [CrossRef]
- Zelikman, M.I.; Kabanov, S.P.; Kruchinin, S.A. Assessment of Effect of Radiation Scattered in a Patient’s Body on Parameters of Digital X-Ray Image Formation Channel. Biomed. Eng. 2014, 47, 228–234. [Google Scholar] [CrossRef]
- Law, W.-Y.; Huang, G.-L.; Yang, C.-C. Effect of Body Mass Index in Coronary CT Angiography Performed on a 256-Slice Multi-Detector CT Scanner. Diagnostics 2022, 12, 319. [Google Scholar] [CrossRef]
- Hsieh, J. Computed Tomography: Principles, Design, Artifacts, and Recent Advances, 4th ed.; Wiley Interscience: Hoboken, NJ, USA, 2022; ISBN 978-0-470-56353-3. [Google Scholar]
- Halperin-Sternfeld, M.; Machtei, E.; Horwitz, J. Diagnostic Accuracy of Cone Beam Computed Tomography for Dimensional Linear Measurements in the Mandible. Int. J. Oral Maxillofac. Implant. 2014, 29, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Kyriakou, Y.; Kalender, W. Efficiency of Antiscatter Grids for Flat-Detector CT. Phys. Med. Biol. 2007, 52, 6275–6293. [Google Scholar] [CrossRef] [PubMed]
- Rinkel, J.; Gerfault, L.; Estève, F.; Dinten, J.-M. Coupling the Use of Anti-Scatter Grid with Analytical Scatter Estimation in Cone Beam CT. In Proceedings of the Medical Imaging 2007: Physics of Medical Imaging, San Diego, CA, USA, 17–22 February 2007; Hsieh, J., Flynn, M.J., Eds.; SPIE: Bellingham, WA, USA, 2007; Volume 6510, p. 65102E. [Google Scholar] [CrossRef]
- Sisniega, A.; Zbijewski, W.; Badal, A.; Kyprianou, I.S.; Stayman, J.W.; Vaquero, J.J.; Siewerdsen, J.H. Monte Carlo Study of the Effects of System Geometry and Antiscatter Grids on Cone-beam CT Scatter Distributions. Med. Phys. 2013, 40, 051915. [Google Scholar] [CrossRef]
- Swindell, W.; Evans, P.M. Scattered Radiation in Portal Images: A Monte Carlo Simulation and a Simple Physical Model. Med. Phys. 1996, 23, 63–73. [Google Scholar] [CrossRef]
- Hansen, V.N.; Swindell, W.; Evans, P.M. Extraction of Primary Signal from EPIDs Using Only Forward Convolution. Med. Phys. 1997, 24, 1477–1484. [Google Scholar] [CrossRef]
- Spies, L.; Ebert, M.; Groh, B.A.; Hesse, B.M.; Bortfeld, T. Correction of Scatter in Megavoltage Cone-Beam CT. Phys. Med. Biol. 2001, 46, 821–833. [Google Scholar] [CrossRef]
- Reitz, I.; Hesse, B.-M.; Nill, S.; Tücking, T.; Oelfke, U. Enhancement of Image Quality with a Fast Iterative Scatter and Beam Hardening Correction Method for KV CBCT. Z. Med. Phys. 2009, 19, 158–172. [Google Scholar] [CrossRef]
- Wiegert, J.; Bertram, M.; Wiesner, S.; Thompson, R.; Brown, K.M.; Morton, T.; Katchalski, T.; Yagil, Y. Improved CT Image Quality Using a New Fully Physical Imaging Chain. In Proceedings of the Medical Imaging 2010: Physics of Medical Imaging, San Diego, CA, USA, 13–18 February 2010; SPIE: Bellingham, WA, USA, 2010; Volume 7622, p. 76221I. [Google Scholar]
- Bootsma, G.J.; Verhaegen, F.; Jaffray, D.A. Efficient Scatter Distribution Estimation and Correction in CBCT Using Concurrent Monte Carlo Fitting. Med. Phys. 2015, 42, 54–68. [Google Scholar] [CrossRef] [PubMed]
- Waltrich, N.; Sawall, S.; Maier, J.; Kuntz, J.; Stannigel, K.; Lindenberg, K.; Kachelrieß, M. Effect of Detruncation on the Accuracy of Monte Carlo-Based Scatter Estimation in Truncated CBCT. Med. Phys. 2018, 45, 3574–3590. [Google Scholar] [CrossRef]
- Naimuddin, S.; Hasegawa, B.; Mistretta, C.A. Scatter-Glare Correction Using a Convolution Algorithm with Variable Weighting. Med. Phys. 1987, 14, 330–334. [Google Scholar] [CrossRef]
- Boone, J.M.; Seibert, J.A. An Analytical Model of the Scattered Radiation Distribution in Diagnostic Radiology. Med. Phys. 1988, 15, 721–725. [Google Scholar] [CrossRef] [PubMed]
- Seibert, J.A.; Boone, J.M. X-ray Scatter Removal by Deconvolution. Med. Phys. 1988, 15, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Rinkel, J.; Gerfault, L.; Estève, F.; Dinten, J.-M. A New Method for X-Ray Scatter Correction: First Assessment on a Cone-Beam CT Experimental Setup. Phys. Med. Biol. 2007, 52, 4633–4652. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Mohan, R.; Zhu, X.R. Scatter Kernel Estimation with an Edge-Spread Function Method for Cone-Beam Computed Tomography Imaging. Phys. Med. Biol. 2008, 53, 6729–6748. [Google Scholar] [CrossRef] [PubMed]
- Maltz, J.S.; Gangadharan, B.; Bose, S.; Hristov, D.H.; Faddegon, B.A.; Paidi, A.; Bani-Hashemi, A.R. Algorithm for X-Ray Scatter, Beam-Hardening, and Beam Profile Correction in Diagnostic (Kilovoltage) and Treatment (Megavoltage) Cone Beam CT. IEEE Trans. Med. Imaging 2008, 27, 1791–1810. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Star-Lack, J.M. Improved Scatter Correction Using Adaptive Scatter Kernel Superposition. Phys. Med. Biol. 2010, 55, 6695–6720. [Google Scholar] [CrossRef]
- Bhatia, N.; Tisseur, D.; Buyens, F.; Létang, J.M. Scattering Correction Using Continuously Thickness-Adapted Kernels. NDT E Int. 2016, 78, 52–60. [Google Scholar] [CrossRef]
- Ohnesorge, B.; Flohr, T.; Klingenbeck-Regn, K. Efficient Object Scatter Correction Algorithm for Third and Fourth Generation CT Scanners. Eur. Radiol. 1999, 9, 563–569. [Google Scholar] [CrossRef]
- McSkimming, T.; Lopez-Montez, A.; Skeats, A.; Delnooz, C.; Gonzales, B.; Perilli, E.; Reynolds, K.; Siewerdsen, J.H.; Zbijewski, W.; Sisniega, A. Adaptive Kernel-Based Scatter Correction for Multi-Source Stationary CT with Non-Circular Geometry. In Proceedings of the Medical Imaging 2023: Physics of Medical Imaging, San Diego, CA, USA, 19–23 February 2010; Fahrig, R., Sabol, J.M., Yu, L., Eds.; SPIE: Bellingham, WA, USA, 2023; p. 33. [Google Scholar]
- Bayat, F.; Ruan, D.; Miften, M.; Altunbas, C. A Quantitative CBCT Pipeline Based on 2D Antiscatter Grid and Grid-Based Scatter Sampling for Image-Guided Radiation Therapy. Med. Phys. 2023, 50, 7980–7995. [Google Scholar] [CrossRef]
- Hegazy, M.A.A.; Cho, M.H.; Cho, M.H.; Lee, S.Y. Metal Artifact Reduction in Dental CBCT Images Using Direct Sinogram Correction Combined with Metal Path-Length Weighting. Sensors 2023, 23, 1288. [Google Scholar] [CrossRef]
- Waltrich, N.; Sawall, S.; Maier, J.; Kuntz, J.; Kachelriess, M.; Stannigel, K.; Lindenberg, K. Influence of Data Completion on Scatter Artifact Correction for Truncated Cone-Beam CT Data. In Proceedings of the Medical Imaging 2018: Physics of Medical Imaging, Houston, TX, USA, 12–15 February 2018; SPIE: Bellingham, WA, USA, 2018; Volume 10573, p. 158. [Google Scholar] [CrossRef]
- Hegazy, M.A.A.; Cho, M.H.; Lee, S.Y. Half-Scan Artifact Correction Using Generative Adversarial Network for Dental CT. Comput. Biol. Med. 2021, 132, 104313. [Google Scholar] [CrossRef] [PubMed]
- Hegazy, M.A.A.; Cho, M.H.; Lee, S.Y. A Metal Artifact Reduction Method for a Dental CT Based on Adaptive Local Thresholding and Prior Image Generation. Biomed. Eng. Online 2016, 15, 119. [Google Scholar] [CrossRef] [PubMed]
- Eldib, M.E.; Hegazy, M.A.A.; Cho, M.H.; Cho, M.H.; Lee, S.Y. A Motion Artifact Reduction Method for Dental CT Based on Subpixel-Resolution Image Registration of Projection Data. Comput. Biol. Med. 2018, 103, 232–243. [Google Scholar] [CrossRef] [PubMed]
Figure of Merit | Uncorrected | Corrected |
---|---|---|
Contrast | 722.84 | 1091.25 |
CNR | 12.25 | 23.5 |
Homogeneity | 21.95 | 30 |
Noise in PMMA | 33.79 | 27.33 |
MTF@10% (LP/mm) | 2.18 | 2.42 |
MTF@50% (LP/mm) | 1.12 | 1.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hegazy, M.A.A.; Cho, M.H.; Cho, M.H.; Lee, S.Y. 3D Digital Modeling of Dental Casts from Their 3D CT Images with Scatter and Beam-Hardening Correction. Sensors 2024, 24, 1995. https://doi.org/10.3390/s24061995
Hegazy MAA, Cho MH, Cho MH, Lee SY. 3D Digital Modeling of Dental Casts from Their 3D CT Images with Scatter and Beam-Hardening Correction. Sensors. 2024; 24(6):1995. https://doi.org/10.3390/s24061995
Chicago/Turabian StyleHegazy, Mohamed A. A., Myung Hye Cho, Min Hyoung Cho, and Soo Yeol Lee. 2024. "3D Digital Modeling of Dental Casts from Their 3D CT Images with Scatter and Beam-Hardening Correction" Sensors 24, no. 6: 1995. https://doi.org/10.3390/s24061995
APA StyleHegazy, M. A. A., Cho, M. H., Cho, M. H., & Lee, S. Y. (2024). 3D Digital Modeling of Dental Casts from Their 3D CT Images with Scatter and Beam-Hardening Correction. Sensors, 24(6), 1995. https://doi.org/10.3390/s24061995