Torque–Cadence Profile and Maximal Dynamic Force in Cyclists: A Novel Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Approach
2.3. Procedures
2.4. Statistical Analyses
3. Results
3.1. Feasibility
3.2. Test–Retest Reliability
3.3. Long-Term Stability
4. Discussion
5. Practical Applications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alcazar, J.; Csapo, R.; Alegre, L.M. Editorial: The Force-Velocity Relationship: Assessment and Adaptations Provoked by Exercise, Disuse and Disease. Front. Physiol. 2022, 13, 1062041. [Google Scholar] [CrossRef]
- Taylor, K.B.; Deckert, S.; Sanders, D. Field-Testing to Determine Power—Cadence and Torque—Cadence Profiles in Professional Road Cyclists. Eur. J. Sport Sci. 2023, 23, 1085–1093. [Google Scholar] [CrossRef] [PubMed]
- García Ramos, A.; Jaric, S. Two-Point Method: A Quick and Fatigue-Free Procedure for Assessment of Muscle Mechanical Capacities and the One-Repetition Maximum. Strength Cond. J. 2017, 40, 54–66. [Google Scholar] [CrossRef]
- Rudsits, B.L.; Hopkins, W.G.; Hautier, C.A.; Rouffet, D.M. Force-Velocity Test on a Stationary Cycle Ergometer: Methodological Recommendations. J. Appl. Physiol. 2018, 124, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Sargeant, A.J.; Hoinville, E.; Young, A. Maximum Leg Force and Power Output during Short-Term Dynamic Exercise. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1981, 51, 1175–1182. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.C.; Wagner, B.M.; Coyle, E.F. Inertial-Load Method Determines Maximal Cycling Power in a Single Exercise Bout. Med. Sci. Sports Exerc. 1997, 29, 1505–1512. [Google Scholar] [CrossRef] [PubMed]
- Coso, J.D.; Mora-Rodríguez, R. Validity of Cycling Peak Power as Measured by a Short-Sprint Test versus the Wingate Anaerobic Test. Appl. Physiol. Nutr. Metab. 2006, 31, 186–189. [Google Scholar] [CrossRef]
- Dorel, S.; Hautier, C.A.; Rambaud, O.; Rouffet, D.; Van Praagh, E.; Lacour, J.R.; Bourdin, M. Torque and Power-Velocity Relationships in Cycling: Relevance to Track Sprint Performance in World-Class Cyclists. Int. J. Sports Med. 2005, 26, 739–746. [Google Scholar] [CrossRef]
- Dorel, S.; Couturier, A.; Lacour, J.-R.; Vandewalle, H.; Hautier, C.; Hug, F. Force-Velocity Relationship in Cycling Revisited: Benefit of Two-Dimensional Pedal Forces Analysis. Med. Sci. Sports Exerc. 2010, 42, 1174–1183. [Google Scholar] [CrossRef]
- García-Ramos, A.; Torrejón, A.; Morales-Artacho, A.J.; Pérez-Castilla, A.; Jaric, S. Optimal Resistive Forces for Maximizing the Reliability of Leg Muscles’ Capacities Tested on a Cycle Ergometer. J. Appl. Biomech. 2018, 34, 47–52. [Google Scholar] [CrossRef]
- García-Ramos, A.; Zivkovic, M.; Djuric, S.; Majstorovic, N.; Manovski, K.; Jaric, S. Assessment of the Two-Point Method Applied in Field Conditions for Routine Testing of Muscle Mechanical Capacities in a Leg Cycle Ergometer. Eur. J. Appl. Physiol. 2018, 118, 1877–1884. [Google Scholar] [CrossRef]
- García-Ramos, A.; Torrejón, A.; Pérez-Castilla, A.; Morales-Artacho, A.J.; Jaric, S. Selective Changes in the Mechanical Capacities of Lower-Body Muscles After Cycle-Ergometer Sprint Training Against Heavy and Light Resistances. Int. J. Sports Physiol. Perform. 2018, 13, 290–297. [Google Scholar] [CrossRef]
- Hernández-Belmonte, A.; Martínez-Cava, A.; Morán-Navarro, R.; Courel-Ibáñez, J.; Pallarés, J.G. A Comprehensive Analysis of the Velocity-Based Method in the Shoulder Press Exercise: Stability of the Load-Velocity Relationship and Sticking Region Parameters. Biol. Sport 2020, 38, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Pareja-Blanco, F.; Walker, S.; Häkkinen, K. Validity of Using Velocity to Estimate Intensity in Resistance Exercises in Men and Women. Int. J. Sports Med. 2020, 41, 1047–1055. [Google Scholar] [CrossRef]
- Loturco, I.; McGuigan, M.R.; Pereira, L.A.; Pareja-Blanco, F. The Load-Velocity Relationship in the Jump Squat Exercise. Biol. Sport 2023, 40, 611–614. [Google Scholar] [CrossRef]
- Nimmerichter, A.; Eston, R.; Bachl, N.; Williams, C. Effects of Low and High Cadence Interval Training on Power Output in Flat and Uphill Cycling Time-Trials. Eur. J. Appl. Physiol. 2012, 112, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Kristoffersen, M.; Gundersen, H.; Leirdal, S.; Iversen, V.V. Low Cadence Interval Training at Moderate Intensity Does Not Improve Cycling Performance in Highly Trained Veteran Cyclists. Front. Physiol. 2014, 5, 34. [Google Scholar] [CrossRef] [PubMed]
- Paton, C.D.; Hopkins, W.G.; Cook, C. Effects of Low- vs. High-Cadence Interval Training on Cycling Performance. J. Strength Cond. Res. 2009, 23, 1758–1763. [Google Scholar] [CrossRef]
- Pallarés, J.G.; Morán-Navarro, R.; Ortega, J.F.; Fernández-Elías, V.E.; Mora-Rodriguez, R. Validity and Reliability of Ventilatory and Blood Lactate Thresholds in Well-Trained Cyclists. PLoS ONE 2016, 11, e0163389. [Google Scholar] [CrossRef]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining Training and Performance Caliber: A Participant Classification Framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef]
- Rodríguez-Rielves, V.; Martínez-Cava, A.; Buendía-Romero, Á.; Lillo-Beviá, J.R.; Courel-Ibáñez, J.; Hernández-Belmonte, A.; Pallarés, J.G. Reproducibility of the Rotor 2INpower Crankset for Monitoring Cycling Power Output: A Comprehensive Analysis in Different Real-Context Situations. Int. J. Sports Physiol. Perform. 2021, 1, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Belmonte, A.; Courel-Ibáñez, J.; Conesa-Ros, E.; Martínez-Cava, A.; Pallarés, J.G. Level of Effort: A Reliable and Practical Alternative to the Velocity-Based Approach for Monitoring Resistance Training. J. Strength Cond. Res. 2022, 36, 2992–2999. [Google Scholar] [CrossRef] [PubMed]
- Grazioli, R.; Loturco, I.; Lopez, P.; Setuain, I.; Goulart, J.; Veeck, F.; Inácio, M.; Izquierdo, M.; Pinto, R.S.; Cadore, E.L. Effects of Moderate-to-Heavy Sled Training Using Different Magnitudes of Velocity Loss in Professional Soccer Players. J. Strength Cond. Res. 2023, 37, 629–635. [Google Scholar] [CrossRef] [PubMed]
Subgroup | VO2max (ml·kg−1·min−1) | MAP (W·kg−1) | MDF (N·kg−1) | Max Torque (N·m·kg−1) | Average Cadence (rpm) † | Cadence at MDF (rpm) |
---|---|---|---|---|---|---|
G1 (n = 17) | 61.5 ± 1.6 | 5.2 ± 0.2 | 12.0 ± 0.8 # | 2.1 ± 0.1 # | 109 ± 7 | 22 ± 5 |
G2 (n = 17) | 63.0 ± 1.9 | 5.4 ± 0.2 | 13.4 ± 0.4 * | 2.3 ± 0.1 * | 112 ± 10 | 22 ± 5 |
G3 (n = 18) | 67.9 ± 2.9 | 5.9 ± 0.3 | 14.8 ± 0.6 * | 2.6 ± 0.1 *# | 111 ± 5 | 21 ± 3 |
Relative Resistive Force (% MDF) | Cadence (rpm) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
General %MDF—Cadence Relationship | Test–Retest Reliability | Long-Term Stability | ||||||||||
Day 1 | Day 2 | Difference (rpm) | SEM (rpm) | SEM (%) | Pre-Training | Post-Training | Difference (rpm) | SEM (rpm) | SEM (%) | |||
Mean ± SD | 95% CI | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |||||||
10 | 223 ± 15 | 219–227 | 222 ± 28 | 222 ± 23 | 0.9 | 7.5 | 3.4 | 223 ± 16 | 226 ± 11 | −3.2 | 9.4 | 4.2 |
20 | 192 ± 12 | 189–196 | 192 ± 24 | 190 ± 21 | 1.1 | 5.3 | 2.8 | 194 ± 11 | 195 ± 7 | −0.9 | 6.4 | 3.3 |
30 | 164 ± 11 | 161–167 | 163 ± 20 | 161 ± 19 | 1.4 | 4.4 | 2.7 | 167 ± 9 | 166 ± 7 | 0.6 | 4.3 | 2.6 |
40 | 138 ± 10 | 135–141 | 136 ± 17 | 135 ± 17 | 1.5 | 4.3 | 3.2 | 141 ± 10 | 139 ± 9 | 1.7 | 3.6 | 2.6 |
50 | 114 ± 10 | 111–117 | 112 ± 15 | 111 ± 14 | 1.0 | 4.6 | 4.1 | 117 ± 11 | 116 ± 10 | 1.8 | 3.6 | 3.1 |
60 | 92 ± 10 | 89–95 | 90 ± 13 | 89 ± 12 | 0.8 | 4.7 | 5.3 | 95 ± 11 | 93 ± 11 | 2.5 | 4.0 | 4.2 |
70 | 71 ± 9 | 69–74 | 70 ± 10 | 69 ± 9 | 0.8 | 4.5 | 6.5 | 74 ± 10 | 72 ± 10 | 2.8 | 4.0 | 5.5 |
80 | 53 ± 7 | 51–55 | 52 ± 8 | 51 ± 7 | 1.5 | 4.0 | 7.7 | 55 ± 9 | 53 ± 9 | 2.7 | 3.8 | 7.0 |
90 | 36 ± 5 | 35–38 | 36 ± 5 | 35 ± 4 | 1.2 | 3.2 | 9.0 | 38 ± 6 | 36 ± 6 | 2.2 | 3.2 | 8.6 |
100 | 22 ± 4 | 21–23 | 23 ± 4 | 22 ± 2 | 1.1 | 3.3 | 14.5 | 22 ± 6 | 21 ± 4 | 1.3 | 2.9 | 13.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Rielves, V.; Barranco-Gil, D.; Buendía-Romero, Á.; Hernández-Belmonte, A.; Higueras-Liébana, E.; Iriberri, J.; Sánchez-Redondo, I.R.; Lillo-Beviá, J.R.; Martínez-Cava, A.; de Pablos, R.; et al. Torque–Cadence Profile and Maximal Dynamic Force in Cyclists: A Novel Approach. Sensors 2024, 24, 1997. https://doi.org/10.3390/s24061997
Rodríguez-Rielves V, Barranco-Gil D, Buendía-Romero Á, Hernández-Belmonte A, Higueras-Liébana E, Iriberri J, Sánchez-Redondo IR, Lillo-Beviá JR, Martínez-Cava A, de Pablos R, et al. Torque–Cadence Profile and Maximal Dynamic Force in Cyclists: A Novel Approach. Sensors. 2024; 24(6):1997. https://doi.org/10.3390/s24061997
Chicago/Turabian StyleRodríguez-Rielves, Víctor, David Barranco-Gil, Ángel Buendía-Romero, Alejandro Hernández-Belmonte, Enrique Higueras-Liébana, Jon Iriberri, Iván R. Sánchez-Redondo, José Ramón Lillo-Beviá, Alejandro Martínez-Cava, Raúl de Pablos, and et al. 2024. "Torque–Cadence Profile and Maximal Dynamic Force in Cyclists: A Novel Approach" Sensors 24, no. 6: 1997. https://doi.org/10.3390/s24061997
APA StyleRodríguez-Rielves, V., Barranco-Gil, D., Buendía-Romero, Á., Hernández-Belmonte, A., Higueras-Liébana, E., Iriberri, J., Sánchez-Redondo, I. R., Lillo-Beviá, J. R., Martínez-Cava, A., de Pablos, R., Valenzuela, P. L., Pallarés, J. G., & Alejo, L. B. (2024). Torque–Cadence Profile and Maximal Dynamic Force in Cyclists: A Novel Approach. Sensors, 24(6), 1997. https://doi.org/10.3390/s24061997