Advancements in Battery Monitoring: Harnessing Fiber Grating Sensors for Enhanced Performance and Reliability
Abstract
:1. Introduction
Method | Parameters | Characteristics | Location |
---|---|---|---|
Fiber Bragg Grating (FBG) [24] | Temperature, Strain, RI, and more | Small size, immune to electromagnetic interference, quasi-distributed measurement, and real-time monitoring | Internal, External |
Resistance Temperature Detector [25] | Temperature | High accuracy, wide linear range, and slow response | Internal, External |
Thermistor [26] | Temperature | Small and cost-effective, fast response, and limited accuracy | Internal, External |
Thermographic Imaging [27] | Temperature | Measures overall temperature distribution, limited resolution and accuracy | External |
Isothermal Calorimetry [28] | Temperature | Complex equipment, poor real-time performance | External |
Infrared (IR) Thermal Imaging [29] | Temperature | Graphic display of temperature distribution, real-time monitoring | External |
Pressure Sensor [30] | Pressure | Real-time monitoring of gas pressure, larger size | External |
Load Cell [31] | Strain | Requires support structure, internal parameters cannot be directly measured | External |
Strain Gauge [32] | Strain | Used for material stress analysis, attached to battery surface | External |
X-ray Diffraction (XRD) [33] | Strain | Material discrimination, phase transformation, structural variation, particle size distribution, and lattice size | External |
X-ray Photoelectron Spectroscopy (XPS) [34] | Strain | Elemental component, valence variation, and energy shifts | External |
Digital Image Correlation [35] | Strain | Acquires surface deformation information, cannot access internal information | External |
IR Spectroscopy [36] | Electrolyte composition | Provides information about the structure of the molecule | External |
Raman Spectroscopy [37] | Electrolyte composition | Measurement of molecular vibrational modes | External |
Nuclear Magnetic Resonance (NMR) [38] | Electrolyte composition | Provides information about the structure of the molecule | External |
Mass Spectrometry [39] | Electrolyte composition | Provides information on the mass and structure of the molecule | External |
Optical Fiber Evanescent Wave [40] | Electrolyte composition | Monitors electrolyte composition, complex sample preparation | Internal |
Machine Learning Algorithms [32] | SOC/SOH | Data-driven analysis, requires a large number of high-quality data | External |
Scanning Transmission Electron Microscope (STEM) [41] | SoC/SoH | Morphological change, element distribution, compositional analysis, and structural change | External |
Equivalent Circuit Model (ECM) [42] | SoC/SoH | Limited accuracy, cumulative model error | External |
2. Battery Degradation Mechanism and Fiber Optic Monitoring Principle
2.1. Battery Principle
2.1.1. Anode Degradation
2.1.2. Cathode Degradation
2.2. Fiber Optic Sensing Principle
2.2.1. Fiber Bragg Grating
2.2.2. Tilted Fiber Bragg Grating
3. Online Monitoring of Battery Degradation
3.1. Monitoring Chemical Formulae and Stereo Structures
3.2. Monitoring Physical Phenomena of Batteries
3.3. Monitoring Compounds and Gas Products
3.4. FBG Measurement Accuracy and Sensitivity
4. Challenges and Outlooks
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
XRD | X-ray Diffraction |
STEM | Scanning Transmission Electron Microscope |
IR | Infrared |
NMR | Nuclear Magnetic Resonance |
RI | Refractive Index |
CV | Cyclic Voltammetry |
CCCV | Constant Current Constant Voltage |
EIS | Electrochemical Impedance Spectroscopy |
pH | Potential of Hydrogen |
QRL | quality, reliability and life |
MZ | Mach–Zehnder |
FBG | Fiber Bragg Grating |
SPR | Surface Plasmon Resonance |
XPS | X-ray Photoelectron Spectroscopy |
SEM | Scanning Electron Microscope |
ECM | Equivalent Circuit Model |
Li-ion | lithium-ion |
SEI | Solid Electrolyte Interface |
CEI | Cathode Electrolyte Interface |
SOC | State of Charge |
TFBG | Tilted Fiber Bragg Grating |
SOH | State of Health |
FOEWS | Fiber optic evanescent wave sensors |
FEP | Fluorinated Ethylene Propylene |
FBGAF | Fiber Bragg Grating Array Film |
PANS | Polyacrylonitrile |
KB/S | Ketjen Black/Sulfur |
PEEK | Polyether Ether Ketone |
FP | Fabry–Perot |
SMF | Single Mode Fiber |
MOF | Microstructure Optical Fiber |
NVPF | |
HC | Hard Carbon |
EC | Ethylene Carbonate |
PC | Propylene Carbonate |
DMC | Dimethyl Carbonate |
NaODFB | Namely Sodium Oxalato (Difluoro) Borate |
VC | Vinylene Carbonate |
SN | Succinonitrile |
TMSPi | Tris-trimethylsilylphosphite |
FPI | Fabry–Perot Interferometer |
RUL | Rmaining Useful Life |
AFDA | Activation Function Dynamic Averaging |
FDDA | Frequency Domain Dynamic Averaging |
CCD | Charge Coupled Device |
TINT | Time of INTegration |
BMS | Battery Management Systems |
References
- Dehghani-Sanij, A.R.; Tharumalingam, E.; Dusseault, M.B.; Fraser, R. Study of Energy Storage Systems and Environmental Challenges of Batteries. Renew. Sustain. Energy Rev. 2019, 104, 192–208. [Google Scholar] [CrossRef]
- Kebede, A.A.; Coosemans, T.; Messagie, M.; Jemal, T.; Behabtu, H.A.; Van Mierlo, J.; Berecibar, M. Techno-Economic Analysis of Li-ion and Lead-Acid Batteries in Stationary Energy Storage Application. J. Energy Storage 2021, 40, 102748. [Google Scholar] [CrossRef]
- Xu, H.; Shen, M. The Control of Lithium-ion Batteries and Supercapacitors in Hybrid Energy Storage Systems for Electric Vehicles: A Review. Int. J. Energy Res. 2021, 45, 20524–20544. [Google Scholar] [CrossRef]
- Graham, J.D.; Rupp, J.A.; Brungard, E. Lithium in the Green Energy Transition: The Quest for Both Sustainability and Security. Sustainability 2021, 13, 11274. [Google Scholar] [CrossRef]
- Grey, C.P.; Hall, D.S. Prospects for Lithium-Ion Batteries and beyond—A 2030 Vision. Nat. Commun. 2020, 11, 6279. [Google Scholar] [CrossRef]
- Fan, X.; Liu, B.; Liu, J.; Ding, J.; Han, X.; Deng, Y.; Lv, X.; Xie, Y.; Chen, B.; Hu, W.; et al. Battery Technologies for Grid-Level Large-Scale Electrical Energy Storage. Trans. Tianjin Univ. 2020, 26, 92–103. [Google Scholar] [CrossRef]
- Mukherjee, S.; Albertengo, A.; Djenizian, T. Beyond Flexible-Li-Ion Battery Systems for Soft Electronics. Energy Storage Mater. 2021, 42, 773–785. [Google Scholar] [CrossRef]
- Apa, L.; D’Alvia, L.; Del Prete, Z.; Rizzuto, E. Battery Energy Storage: An Automated System for the Simulation of Real Cycles in Domestic Renewable Applications. In Proceedings of the 2023 IEEE 13th International Workshop on Applied Measurements for Power Systems (AMPS), Bern, Switzerland, 27–29 September 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Surya, S.; Rao, V.; Williamson, S.S. Comprehensive Review on Smart Techniques for Estimation of State of Health for Battery Management System Application. Energies 2021, 14, 4617. [Google Scholar] [CrossRef]
- Zou, B.; Zhang, L.; Xue, X.; Tan, R.; Jiang, P.; Ma, B.; Song, Z.; Hua, W. A Review on the Fault and Defect Diagnosis of Lithium-Ion Battery for Electric Vehicles. Energies 2023, 16, 5507. [Google Scholar] [CrossRef]
- Li, R.; Li, W.; Singh, A.; Ren, D.; Hou, Z.; Ouyang, M. Effect of External Pressure and Internal Stress on Battery Performance and Lifespan. Energy Storage Mater. 2022, 52, 395–429. [Google Scholar] [CrossRef]
- Pradhan, S.K.; Chakraborty, B. Battery Management Strategies: An Essential Review for Battery State of Health Monitoring Techniques. J. Energy Storage 2022, 51, 104427. [Google Scholar] [CrossRef]
- Novais, S.; Nascimento, M.; Grande, L.; Domingues, M.; Antunes, P.; Alberto, N.; Leitão, C.; Oliveira, R.; Koch, S.; Kim, G.; et al. Internal and External Temperature Monitoring of a Li-Ion Battery with Fiber Bragg Grating Sensors. Sensors 2016, 16, 1394. [Google Scholar] [CrossRef]
- Badar, M.; Lu, P.; Wang, Q.; Boyer, T.; Chen, K.P.; Ohodnicki, P.R. Real-Time Optical Fiber-Based Distributed Temperature Monitoring of Insulation Oil-Immersed Commercial Distribution Power Transformer. IEEE Sens. J. 2021, 21, 3013–3019. [Google Scholar] [CrossRef]
- Wu, Y.; Long, X.; Lu, J.; Zhou, R.; Liu, L.; Wu, Y. Long-Life in-Situ Temperature Field Monitoring Using Fiber Bragg Grating Sensors in Electromagnetic Launch High-Rate Hardcase Lithium-Ion Battery. J. Energy Storage 2023, 57, 106207. [Google Scholar] [CrossRef]
- Nascimento, M.; Ferreira, M.S.; Pinto, J.L. Real Time Thermal Monitoring of Lithium Batteries with Fiber Sensors and Thermocouples: A Comparative Study. Measurement 2017, 111, 260–263. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Yang, X.-G.; Zuo, F.; Liu, S.; Lin, C. A Smart Li-Ion Battery with Self-Sensing Capabilities for Enhanced Life and Safety. J. Power Sources 2022, 546, 231705. [Google Scholar] [CrossRef]
- Riza, M.A.; Go, Y.I.; Harun, S.W.; Maier, R.R.J. FBG Sensors for Environmental and Biochemical Applications—A Review. IEEE Sens. J. 2020, 20, 7614–7627. [Google Scholar] [CrossRef]
- Han, G.; Yan, J.; Guo, Z.; Greenwood, D.; Marco, J.; Yu, Y. A Review on Various Optical Fiber Sensing Methods for Batteries. Renew. Sust. Energy Rev. 2021, 150, 111514. [Google Scholar] [CrossRef]
- Wahl, M.S.; Spitthoff, L.; Muri, H.I.; Jinasena, A.; Burheim, O.S.; Lamb, J.J. The Importance of Optical Fibers for Internal Temperature Sensing in Lithium-Ion Batteries during Operation. Energies 2021, 14, 3617. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, Q.; Zheng, Y.; Xu, Y.; Chen, Y.; Ni, J.; Zhao, Y. Recent Progress in Lithium-Ion Battery Safety Monitoring Based on Fiber Bragg Grating Sensors. Sensors 2023, 23, 5609. [Google Scholar] [CrossRef]
- Su, Y.-D.; Preger, Y.; Burroughs, H.; Sun, C.; Ohodnicki, P. Fiber Optic Sensing Technologies for Battery Management Systems and Energy Storage Applications. Sensors 2021, 21, 1397. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Y.; Guo, Z.; Li, J.; Ge, X.; Sun, Q.; Yan, Z.; Li, Z.; Huang, Y. Health Monitoring by Optical Fiber Sensing Technology for Rechargeable Batteries. eScience 2023, 4, 100174. [Google Scholar] [CrossRef]
- Fortier, A.; Tsao, M.; Williard, N.; Xing, Y.; Pecht, M. Preliminary Study on Integration of Fiber Optic Bragg Grating Sensors in Li-Ion Batteries and In Situ Strain and Temperature Monitoring of Battery Cells. Energies 2017, 10, 838. [Google Scholar] [CrossRef]
- Li, B.; Parekh, M.H.; Adams, R.A.; Adams, T.E.; Love, C.T.; Pol, V.G.; Tomar, V. Lithium-Ion Battery Thermal Safety by Early Internal Detection, Prediction and Prevention. Sci. Rep. 2019, 9, 13255. [Google Scholar] [CrossRef]
- Barcellona, S.; Colnago, S.; Dotelli, G.; Latorrata, S.; Piegari, L. Aging Effect on the Variation of Li-Ion Battery Resistance as Function of Temperature and State of Charge. J. Energy Storage 2022, 50, 104658. [Google Scholar] [CrossRef]
- Robinson, J.; Shearing, P.; Brett, D. Thermal Imaging of Electrochemical Power Systems: A Review. J. Imaging 2016, 2, 2. [Google Scholar] [CrossRef]
- Winton, A.J.; Allen, M.A. Rational Design of a Bifunctional Peptide Exhibiting Lithium Titanate Oxide and Carbon Nanotube Affinities for Lithium-Ion Battery Applications. ACS Appl. Mater. Interfaces 2023, 15, 8579–8589. [Google Scholar] [CrossRef]
- Altin, S.; Altundag, E.; Altin, E.; Altundag, S. Improved Battery Performance of Silicon Modified Na0.67Fe0.5Mn0.5O2 and Its Structural and Electrochemical Properties: An Investigation of Infrared Thermal Imaging. J. Energy Storage 2021, 41, 102979. [Google Scholar] [CrossRef]
- Liu, Z.; Li, G.; Qin, Q.; Mi, L.; Li, G.; Zheng, G.; Liu, C.; Li, Q.; Liu, X. Electrospun PVDF/PAN Membrane for Pressure Sensor and Sodium-Ion Battery Separator. Adv. Compos. Hybrid Mater. 2021, 4, 1215–1225. [Google Scholar] [CrossRef]
- Cannarella, J.; Arnold, C.B. Stress Evolution and Capacity Fade in Constrained Lithium-Ion Pouch Cells. J. Power Sources 2014, 245, 745–751. [Google Scholar] [CrossRef]
- Hendricks, C.; Sood, B.; Pecht, M. Lithium-Ion Battery Strain Gauge Monitoring and Depth of Discharge Estimation. J. Electrochem. Energy 2023, 20, 011008. [Google Scholar] [CrossRef]
- Al-Tabbakh, A.A.; Karatepe, N.; Al-Zubaidi, A.B.; Benchaabane, A.; Mahmood, N.B. Crystallite Size and Lattice Strain of Lithiated Spinel Material for Rechargeable Battery by X-ray Diffraction Peak-Broadening Analysis. Int. J. Energy Res. 2019, 43, 1903–1911. [Google Scholar] [CrossRef]
- Louli, A.J.; Ellis, L.D.; Dahn, J.R. Operando Pressure Measurements Reveal Solid Electrolyte Interphase Growth to Rank Li-Ion Cell Performance. Joule 2019, 3, 745–761. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, L.; Zhang, X.; Yang, M.; Tan, D.; Hai, C.; Liu, J.; Wang, J. Deformation Measurement within Lithium-Ion Battery Using Sparse-View Computed Tomography and Digital Image Correlation. Meas. Sci. Technol. 2023, 34, 025402. [Google Scholar] [CrossRef]
- Amaral, M.M.; Real, C.G.; Yukuhiro, V.Y.; Doubek, G.; Fernandez, P.S.; Singh, G.; Zanin, H. In Situ and Operando Infrared Spectroscopy of Battery Systems: Progress and Opportunities. J. Energy Chem. 2023, 81, 472–491. [Google Scholar] [CrossRef]
- Miele, E.; Dose, W.M.; Manyakin, I.; Frosz, M.H.; Ruff, Z.; De Volder, M.F.L.; Grey, C.P.; Baumberg, J.J.; Euser, T.G. Hollow-Core Optical Fiber Sensors for Operando Raman Spectroscopy Investigation of Li-Ion Battery Liquid Electrolytes. Nat. Commun. 2022, 13, 1651. [Google Scholar] [CrossRef]
- Liu, X.; Liang, Z.; Xiang, Y.; Lin, M.; Li, Q.; Liu, Z.; Zhong, G.; Fu, R.; Yang, Y. Solid-State NMR and MRI Spectroscopy for Li/Na Batteries: Materials, Interface, and In Situ Characterization. Adv. Mater. 2021, 33, 2005878. [Google Scholar] [CrossRef]
- Zhou, Y.; Su, M.; Yu, X.; Zhang, Y.; Wang, J.-G.; Ren, X.; Cao, R.; Xu, W.; Baer, D.R.; Du, Y.; et al. Real-Time Mass Spectrometric Characterization of the Solid–Electrolyte Interphase of a Lithium-Ion Battery. Nat. Nanotechnol. 2020, 15, 224–230. [Google Scholar] [CrossRef]
- Hedman, J.; Nilebo, D.; Larsson Langhammer, E.; Björefors, F. Fiber Optic Sensor for Characterisation of Lithium-Ion Batteries. ChemSusChem 2020, 13, 5731–5739. [Google Scholar] [CrossRef]
- Zachman, M.J.; Yang, Z.; Du, Y.; Chi, M. Robust Atomic-Resolution Imaging of Lithium in Battery Materials by Center-of-Mass Scanning Transmission Electron Microscopy. ACS Nano 2022, 16, 1358–1367. [Google Scholar] [CrossRef] [PubMed]
- Tran, M.-K.; Mathew, M.; Janhunen, S.; Panchal, S.; Raahemifar, K.; Fraser, R.; Fowler, M. A Comprehensive Equivalent Circuit Model for Lithium-Ion Batteries, Incorporating the Effects of State of Health, State of Charge, and Temperature on Model Parameters. J. Energy Storage 2021, 43, 103252. [Google Scholar] [CrossRef]
- Deng, D.R.; Cui, X.Y.; Wu, Q.H.; Zheng, M.S.; Dong, Q.F. In-situ Synthesis TiO2 Nanosheets@rGO for Ultrafast Sodium ion Storage at Both Room and Low Temperatures. J. Alloys Compd. 2020, 835. [Google Scholar] [CrossRef]
- Deng, D.R.; Yuan, R.M.; Yu, P.K.; Xue, F.; Fan, X.X.; Lei, J.; Zhang, J.L.; Lin, X.D.; Wu, Q.H.; Fan, J.M.; et al. An Enhanced Electrode via Coupling with a Conducting Molecule to Extend Interfacial Reactions. Adv. Energy Mater. 2021, 11, 2101156. [Google Scholar] [CrossRef]
- Deng, D.R.; Cui, X.Y.; Fan, X.X.; Zheng, J.Q.; Fan, X.H.; Wu, Q.H.; Zheng, M.S.; Dong, Q.F. Integration of Adsorption and Catalytic Active Sites in Cobalt Iron Oxide Nanorods for An Excellent Performance Li–S Battery with A Wide Temperature Range. Sustain. Energy Fuels 2021, 5, 4284–4288. [Google Scholar] [CrossRef]
- Deng, D.R.; Li, C.; Weng, J.C.; Fan, X.H.; Chen, Z.J.; Yang, G.; Li, Y.; Wu, Q.H.; Zheng, M.S.; Dong, Q.F. Thin Nano Cages with Limited Hollow Space for Ultrahigh Sulfur Loading Lithium–Sulfur Batteries. ACS Appl. Mater. Interfaces 2022, 14, 45414–45422. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Fan, X.; Deng, D.; Wu, Q.H.; Jia, L. Surface Charge Induced Self-assembled Nest-like Ni3S2/PNG Composites for High-performance Supercapacitors. J. Colloid Interf. Sci. 2023, 650, 913–923. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.; Shamim, N.; Crawford, A.; Huang, Q.; Vartanian, C.K.; Viswanathan, V.V.; Paiss, M.D.; Alam, M.J.E.; Reed, D.M.; Sprenkle, V.L. Li-Ion Battery Technology for Grid Application. J. Power Sources 2021, 511, 230419. [Google Scholar] [CrossRef]
- Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N.; et al. A Review of Lithium-Ion Battery Safety Concerns: The Issues, Strategies, and Testing Standards. J. Energy Chem. 2021, 59, 83–99. [Google Scholar] [CrossRef]
- Kong, D.; Lv, H.; Ping, P.; Wang, G. A Review of Early Warning Methods of Thermal Runaway of Lithium Ion Batteries. J. Energy Storage 2023, 64, 107073. [Google Scholar] [CrossRef]
- Chombo, P.V.; Laoonual, Y. A Review of Safety Strategies of a Li-Ion Battery. J. Power Sources 2020, 478, 228649. [Google Scholar] [CrossRef]
- Ould Ely, T.; Kamzabek, D.; Chakraborty, D. Batteries Safety: Recent Progress and Current Challenges. Front. Energy Res. 2019, 7, 71. [Google Scholar] [CrossRef]
- Ren, D.; Feng, X.; Liu, L.; Hsu, H.; Lu, L.; Wang, L.; He, X.; Ouyang, M. Investigating the Relationship between Internal Short Circuit and Thermal Runaway of Lithium-Ion Batteries under Thermal Abuse Condition. Energy Storage Mater. 2021, 34, 563–573. [Google Scholar] [CrossRef]
- Lyu, P.; Liu, X.; Qu, J.; Zhao, J.; Huo, Y.; Qu, Z.; Rao, Z. Recent Advances of Thermal Safety of Lithium Ion Battery for Energy Storage. Energy Storage Mater. 2020, 31, 195–220. [Google Scholar] [CrossRef]
- Xiao, Z.; Liu, C.; Zhao, T.; Kuang, Y.; Yin, B.; Yuan, R.; Song, L. Review—Online Monitoring of Internal Temperature in Lithium-Ion Batteries. J. Electrochem. Soc. 2023, 170, 057517. [Google Scholar] [CrossRef]
- Meda, U.S.; Lal, L.; M, S.; Garg, P. Solid Electrolyte Interphase (SEI), a Boon or a Bane for Lithium Batteries: A Review on the Recent Advances. J. Energy Storage 2022, 47, 103564. [Google Scholar] [CrossRef]
- Rao Rikka, V.; Ranjan Sahu, S.; Chatterjee, A.; Gopalan, R.; Sundararajan, G.; Prakash, R. Composition-Dependent Long-Term Stability of Mosaic Solid-Electrolyte Interface for Long-Life Lithium-Ion Battery. Batter. Supercaps 2021, 4, 1720–1730. [Google Scholar] [CrossRef]
- Yan, C.; Xu, R.; Xiao, Y.; Ding, J.; Xu, L.; Li, B.; Huang, J. Toward Critical Electrode/Electrolyte Interfaces in Rechargeable Batteries. Adv. Funct. Mater. 2020, 30, 1909887. [Google Scholar] [CrossRef]
- Wu, H.; Jia, H.; Wang, C.; Zhang, J.; Xu, W. Recent Progress in Understanding Solid Electrolyte Interphase on Lithium Metal Anodes. Adv. Energy Mater. 2021, 11, 2003092. [Google Scholar] [CrossRef]
- Xu, H.; Han, C.; Li, W.; Li, H.; Qiu, X. Quantification of Lithium Dendrite and Solid Electrolyte Interphase (SEI) in Lithium-Ion Batteries. J. Power Sources 2022, 529, 231219. [Google Scholar] [CrossRef]
- Yoo, D.-J.; Liu, Q.; Cohen, O.; Kim, M.; Persson, K.A.; Zhang, Z. Understanding the Role of SEI Layer in Low-Temperature Performance of Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2022, 14, 11910–11918. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Zhang, Q.; Tian, J.; Chen, L.; Li, N.; Su, Y.; Bao, L.; Lu, Y.; Cao, D.; Yan, K.; et al. High-Temperature Storage Deterioration Mechanism of Cylindrical 21700-Type Batteries Using Ni-Rich Cathodes under Different SOCs. ACS Appl. Mater. Interfaces 2021, 13, 6286–6297. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; He, X.; Ouyang, M.; Wang, L.; Lu, L.; Ren, D.; Santhanagopalan, S. A Coupled Electrochemical-Thermal Failure Model for Predicting the Thermal Runaway Behavior of Lithium-Ion Batteries. J. Electrochem. Soc. 2018, 165, A3748–A3765. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Li, Z.; Yan, Z.; Xiao, X.; Liu, X.; Chen, J.; Shen, Y.; Sun, Q.; Huang, Y. Operando Decoding of Surface Strain in Anode-Free Lithium Metal Batteries via Optical Fiber Sensor. Adv. Sci. 2022, 9, 2203247. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, J.; Qin, Y.; Gao, T. Enhancing the Charging Performance of Lithium-Ion Batteries by Reducing SEI and Charge Transfer Resistances. ACS Appl. Mater. Interfaces 2022, 14, 33004–33012. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Engtrakul, C.; Nanayakkara, S.; Mulder, D.W.; Han, S.-D.; Zhou, M.; Luo, H.; Tenent, R.C. Understanding Degradation at the Lithium-Ion Battery Cathode/Electrolyte Interface: Connecting Transition-Metal Dissolution Mechanisms to Electrolyte Composition. ACS Appl. Mater. Interfaces 2021, 13, 11930–11939. [Google Scholar] [CrossRef]
- Guo, J.; Li, Y.; Pedersen, K.; Stroe, D.-I. Lithium-Ion Battery Operation, Degradation, and Aging Mechanism in Electric Vehicles: An Overview. Energies 2021, 14, 5220. [Google Scholar] [CrossRef]
- Han, X.; Lu, L.; Zheng, Y.; Feng, X.; Li, Z.; Li, J.; Ouyang, M. A Review on the Key Issues of the Lithium Ion Battery Degradation among the Whole Life Cycle. eTransportation 2019, 1, 100005. [Google Scholar] [CrossRef]
- Woody, M.; Arbabzadeh, M.; Lewis, G.M.; Keoleian, G.A.; Stefanopoulou, A. Strategies to Limit Degradation and Maximize Li-Ion Battery Service Lifetime - Critical Review and Guidance for Stakeholders. J. Energy Storage 2020, 28, 101231. [Google Scholar] [CrossRef]
- Miao, Z.; Li, Y.; Xiao, X.; Sun, Q.; He, B.; Chen, X.; Liao, Y.; Zhang, Y.; Yuan, L.; Yan, Z.; et al. Direct Optical Fiber Monitor on Stress Evolution of the Sulfur-Based Cathodes for Lithium–Sulfur Batteries. Energy Environ. Sci. 2022, 15, 2029–2038. [Google Scholar] [CrossRef]
- Palacín, M.R. Understanding Ageing in Li-Ion Batteries: A Chemical Issue. Chem. Soc. Rev. 2018, 47, 4924–4933. [Google Scholar] [CrossRef]
- Lo Presti, D.; Massaroni, C.; Jorge Leitao, C.S.; De Fatima Domingues, M.; Sypabekova, M.; Barrera, D.; Floris, I.; Massari, L.; Oddo, C.M.; Sales, S.; et al. Fiber Bragg Gratings for Medical Applications and Future Challenges: A Review. IEEE Access 2020, 8, 156863–156888. [Google Scholar] [CrossRef]
- Li, C.; Tang, J.; Cheng, C.; Cai, L.; Yang, M. FBG Arrays for Quasi-Distributed Sensing: A Review. Photonic Sens. 2021, 11, 91–108. [Google Scholar] [CrossRef]
- Bachar, L.; Klein, R.; Tur, M.; Bortman, J. Fault Diagnosis of Gear Transmissions via Optic Fiber Bragg Grating Strain Sensors. Mech. Syst. Signal Process. 2022, 169, 108629. [Google Scholar] [CrossRef]
- Rohan, R.; Venkadeshwaran, K.; Ranjan, P. Recent Advancements of Fiber Bragg Grating Sensors in Biomedical Application: A Review. J. Opt. 2023. [Google Scholar] [CrossRef]
- Vikas; Mishra, S.; Mishra, A.; Saccomandi, P.; Verma, R. Recent Advances in Lossy Mode Resonance-Based Fiber Optic Sensors: A Review. Micromachines 2022, 13, 1921. [Google Scholar] [CrossRef]
- Meitei, S.N.; Borah, K.; Chatterjee, S. Partial Discharge Detection in an Oil-Filled Power Transformer Using Fiber Bragg Grating Sensors: A Review. IEEE Sens. J. 2021, 21, 10304–10316. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, Q.; Zhang, J.; Feng, D.; Wu, P.; Zhang, Y.; Lv, H.; Yang, N.; Wang, D.; Zhan, H.; et al. Research on Spacecraft Strain Measurement System and Impact Sensing Technology Based on Fiber Grating Sensors and All Fiber Optic Sensing. J. Phys. Conf. Ser. 2021, 1846, 012094. [Google Scholar] [CrossRef]
- Bonopera, M. Fiber-Bragg-Grating-Based Displacement Sensors: Review of Recent Advances. Materials 2022, 15, 5561. [Google Scholar] [CrossRef]
- Li, T.; Guo, J.; Tan, Y.; Zhou, Z. Recent Advances and Tendency in Fiber Bragg Grating-Based Vibration Sensor: A Review. IEEE Sens. J. 2020, 20, 12074–12087. [Google Scholar] [CrossRef]
- Shadab, A.; Raghuwanshi, S.K.; Kumar, S. Advances in Micro-Fabricated Fiber Bragg Grating for Detection of Physical, Chemical, and Biological Parameters—A Review. IEEE Sens. J. 2022, 22, 15650–15660. [Google Scholar] [CrossRef]
- Massaroni, C.; Zaltieri, M.; Lo Presti, D.; Nicolo, A.; Tosi, D.; Schena, E. Fiber Bragg Grating Sensors for Cardiorespiratory Monitoring: A Review. IEEE Sens. J. 2021, 21, 14069–14080. [Google Scholar] [CrossRef]
- Caucheteur, C.; Guo, T.; Liu, F.; Guan, B.-O.; Albert, J. Ultrasensitive Plasmonic Sensing in Air Using Optical Fiber Spectral Combs. Nat. Commun. 2016, 7, 13371. [Google Scholar] [CrossRef]
- Li, Z.; Xiao, Y.; Liu, F.; Yan, X.; You, D.; Li, K.; Zeng, L.; Zhu, M.; Xiao, G.; Albert, J.; et al. Operando Optical Fiber Monitoring of Nanoscale and Fast Temperature Changes during Photo-Electrocatalytic Reactions. Light Sci. Appl. 2022, 11, 220. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X.; Zhu, Q.; Li, K.; Lu, Y.; Zhou, X.; Guo, T. Ultrasensitive Detection of Endocrine Disruptors via Superfine Plasmonic Spectral Combs. Light Sci. Appl. 2021, 10, 181. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, L.; Li, H. Phase-Inserted Fiber Gratings and Their Applications to Optical Filtering, Optical Signal Processing, and Optical Sensing: Review. Photonics 2022, 9, 271. [Google Scholar] [CrossRef]
- Gao, S.; Wang, H.; Chen, Y.; Wei, H.; Woyessa, G.; Bang, O.; Min, R.; Qu, H.; Caucheteur, C.; Hu, X. Point-by-Point Induced High Birefringence Polymer Optical Fiber Bragg Grating for Strain Measurement. Photonics 2023, 10, 91. [Google Scholar] [CrossRef]
- Matveenko, V.; Serovaev, G. Distributed Strain Measurements Based on Rayleigh Scattering in the Presence of Fiber Bragg Gratings in an Optical Fiber. Photonics 2023, 10, 868. [Google Scholar] [CrossRef]
- Cheng, X.; Pecht, M. In Situ Stress Measurement Techniques on Li-Ion Battery Electrodes: A Review. Energies 2017, 10, 591. [Google Scholar] [CrossRef]
- Huang, J.; Han, X.; Liu, F.; Gervillié, C.; Blanquer, L.A.; Guo, T.; Tarascon, J.-M. Monitoring Battery Electrolyte Chemistry via in-Operando Tilted Fiber Bragg Grating Sensors. Energy Environ. Sci. 2021, 14, 6464–6475. [Google Scholar] [CrossRef]
- Singh, Y.; Raghuwanshi, S.K.; Prakash, O.; Saini, P.K. Design and Development of Tilted Fiber Bragg Grating (TFBG) Chemical Sensor with Regression Analysis of Grating Parameters for Sensitivity Optimization. Opt. Quant Electron. 2021, 53, 664. [Google Scholar] [CrossRef]
- Xue, X.; Han, X.; Li, L.; Min, L.; You, D.; Guo, T. Real-Time Monitoring of Human Breathing Using Wearable Tilted Fiber Grating Curvature Sensors. J. Lightwave Technol. 2023, 41, 4531–4539. [Google Scholar] [CrossRef]
- Sypabekova, M.; Amantayeva, A.; Vangelista, L.; González-Vila, Á.; Caucheteur, C.; Tosi, D. Ultralow Limit Detection of Soluble HER2 Biomarker in Serum with a Fiber-Optic Ball-Tip Resonator Assisted by a Tilted FBG. ACS Meas. Sci. Au 2022, 2, 309–316. [Google Scholar] [CrossRef]
- Yang, G.; Leitão, C.; Li, Y.; Pinto, J.; Jiang, X. Real-Time Temperature Measurement with Fiber Bragg Sensors in Lithium Batteries for Safety Usage. Measurement 2013, 46, 3166–3172. [Google Scholar] [CrossRef]
- Nascimento, M.; Paixão, T.; Ferreira, M.; Pinto, J. Thermal Mapping of a Lithium Polymer Batteries Pack with FBGs Network. Batteries 2018, 4, 67. [Google Scholar] [CrossRef]
- Nascimento, M.; Ferreira, M.S.; Pinto, J.L. Temperature Fiber Sensing of Li-Ion Batteries under Different Environmental and Operating Conditions. Appl. Therm. Eng. 2019, 149, 1236–1243. [Google Scholar] [CrossRef]
- Matuck, L.; Pinto, J.L.; Marques, C.; Nascimento, M. Evaluation of the Orientation Impact on Thermal Behavior of Cylindrical Li-Ion Batteries in Different Cycling Conditions Using Fiber Bragg Grating Sensors. J. Phys. Conf. Ser. 2022, 2407, 012050. [Google Scholar] [CrossRef]
- Sommer, L.W.; Kiesel, P.; Ganguli, A.; Lochbaum, A.; Saha, B.; Schwartz, J.; Bae, C.-J.; Alamgir, M.; Raghavan, A. Fast and Slow Ion Diffusion Processes in Lithium Ion Pouch Cells during Cycling Observed with Fiber Optic Strain Sensors. J. Power Sources 2015, 296, 46–52. [Google Scholar] [CrossRef]
- Pereira, G.; McGugan, M.; Mikkelsen, L.P. Method for Independent Strain and Temperature Measurement in Polymeric Tensile Test Specimen Using Embedded FBG Sensors. Polymer Test. 2016, 50, 125–134. [Google Scholar] [CrossRef]
- Nascimento, M.; Ferreira, M.; Pinto, J. Simultaneous Sensing of Temperature and Bi-Directional Strain in a Prismatic Li-Ion Battery. Batteries 2018, 4, 23. [Google Scholar] [CrossRef]
- Matuck, L.; Pinto, J.L.; Marques, C.; Nascimento, M. Simultaneous Strain and Temperature Discrimination in 18650 Li-Ion Batteries Using Polarization-Maintaining Fiber Bragg Gratings. Batteries 2022, 8, 233. [Google Scholar] [CrossRef]
- Sommer, L.W.; Raghavan, A.; Kiesel, P.; Saha, B.; Schwartz, J.; Lochbaum, A.; Ganguli, A.; Bae, C.-J.; Alamgir, M. Monitoring of Intercalation Stages in Lithium-Ion Cells over Charge-Discharge Cycles with Fiber Optic Sensors. J. Electrochem. Soc. 2015, 162, A2664–A2669. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Sawamura, A.; Tsuda, T.; Uchida, S.; Ishikawa, M.; Kuwabata, S. Visualization of Si Anode Reactions in Coin-Type Cells via Operando Scanning Electron Microscopy. ACS Appl. Mater. Interfaces 2017, 9, 35511–35515. [Google Scholar] [CrossRef]
- Duan, X.; Wang, H.; Jia, Y.; Wang, L.; Liu, B.; Xu, J. A Multiphysics Understanding of Internal Short Circuit Mechanisms in Lithium-Ion Batteries upon Mechanical Stress Abuse. Energy Storage Mater. 2022, 45, 667–679. [Google Scholar] [CrossRef]
- Zhang, K.; Yin, J.; He, Y. Acoustic Emission Detection and Analysis Method for Health Status of Lithium Ion Batteries. Sensors 2021, 21, 712. [Google Scholar] [CrossRef]
- Chien, Y.-C.; Menon, A.S.; Brant, W.R.; Lacey, M.J.; Brandell, D. Understanding the Impact of Precipitation Kinetics on the Electrochemical Performance of Lithium–Sulfur Batteries by Operando X-ray Diffraction. J. Phys. Chem. C 2022, 126, 2971–2979. [Google Scholar] [CrossRef]
- Choi, W.; Shin, H.-C.; Kim, J.M.; Choi, J.-Y.; Yoon, W.-S. Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-Ion Batteries. J. Electrochem. Sci. Technol. 2020, 11, 1–13. [Google Scholar] [CrossRef]
- Ghannoum, A.; Nieva, P. Graphite Lithiation and Capacity Fade Monitoring of Lithium Ion Batteries Using Optical Fibers. J. Energy Storage 2020, 28, 101233. [Google Scholar] [CrossRef]
- Gervillié-Mouravieff, C.; Boussard-Plédel, C.; Huang, J.; Leau, C.; Blanquer, L.A.; Yahia, M.B.; Doublet, M.-L.; Boles, S.T.; Zhang, X.H.; Adam, J.L.; et al. Unlocking Cell Chemistry Evolution with Operando Fiber Optic Infrared Spectroscopy in Commercial Na(Li)-Ion Batteries. Nat. Energy 2022, 7, 1157–1169. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, H.; Liu, Q.; Liu, F.; Han, X.; Liu, X.; Li, K.; Xiao, G.; Albert, J.; Lu, X.; et al. Operando Monitoring of Ion Activities in Aqueous Batteries with Plasmonic Fiber-Optic Sensors. Nat. Commun. 2022, 13, 547. [Google Scholar] [CrossRef]
- Han, X.; Zhong, H.; Li, K.; Xue, X.; Wu, W.; Hu, N.; Lu, X.; Huang, J.; Xiao, G.; Mai, Y.; et al. Operando Monitoring of Dendrite Formation in Lithium Metal Batteries via Ultrasensitive Tilted Fiber Bragg Grating Sensors. Light Sci. Appl. 2024, 13, 24. [Google Scholar] [CrossRef]
- Xi, J.; Li, J.; Sun, H.; Ma, T.; Deng, L.; Liu, N.; Huang, X.; Zhang, J. In-Situ Monitoring of Internal Temperature and Strain of Solid-State Battery Based on Optical Fiber Sensors. Sens. Actuat. A-Phys. 2022, 347, 113888. [Google Scholar] [CrossRef]
- Yang, L.; Li, N.; Hu, L.; Wang, S.; Wang, L.; Zhou, J.; Song, W.-L.; Sun, L.; Pan, T.-S.; Chen, H.-S.; et al. Internal Field Study of 21700 Battery Based on Long-Life Embedded Wireless Temperature Sensor. Acta Mech. Sin. 2021, 37, 895–901. [Google Scholar] [CrossRef]
- Parhizi, M.; Ahmed, M.B.; Jain, A. Determination of the Core Temperature of a Li-Ion Cell during Thermal Runaway. J. Power Sources 2017, 370, 27–35. [Google Scholar] [CrossRef]
- Amietszajew, T.; McTurk, E.; Fleming, J.; Bhagat, R. Understanding the Limits of Rapid Charging Using Instrumented Commercial 18650 High-Energy Li-Ion Cells. Electrochim. Acta 2018, 263, 346–352. [Google Scholar] [CrossRef]
- Fleming, J.; Amietszajew, T.; McTurk, E.; Towers, D.P.; Greenwood, D.; Bhagat, R. Development and Evaluation of In-Situ Instrumentation for Cylindrical Li-Ion Cells Using Fiber Optic Sensors. HardwareX 2018, 3, 100–109. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Z.; Mei, W.; Han, X.; Liu, P.; Wang, C.; Xia, X.; Li, K.; Wang, S.; Wang, Q.; et al. Operando Monitoring Lithium-Ion Battery Temperature via Implanting Femtosecond-Laser-Inscribed Optical Fiber Sensors. Measurement 2022, 203, 111961. [Google Scholar] [CrossRef]
- Bae, C.; Manandhar, A.; Kiesel, P.; Raghavan, A. Monitoring the Strain Evolution of Lithium-Ion Battery Electrodes Using an Optical Fiber Bragg Grating Sensor. Energy Technol. 2016, 4, 851–855. [Google Scholar] [CrossRef]
- Ganguli, A.; Saha, B.; Raghavan, A.; Kiesel, P.; Arakaki, K.; Schuh, A.; Schwartz, J.; Hegyi, A.; Sommer, L.W.; Lochbaum, A.; et al. Embedded Fiber-Optic Sensing for Accurate Internal Monitoring of Cell State in Advanced Battery Management Systems Part 2: Internal Cell Signals and Utility for State Estimation. J. Power Sources 2017, 341, 474–482. [Google Scholar] [CrossRef]
- Albero Blanquer, L.; Marchini, F.; Seitz, J.R.; Daher, N.; Bétermier, F.; Huang, J.; Gervillié, C.; Tarascon, J.-M. Optical Sensors for Operando Stress Monitoring in Lithium-Based Batteries Containing Solid-State or Liquid Electrolytes. Nat. Commun. 2022, 13, 1153. [Google Scholar] [CrossRef]
- Unterkofler, J.; Glanz, G.; Koller, M.; Klambauer, R.; Bergmann, A. Strain Compensation Methods for Fiber Bragg Grating Temperature Sensors Suitable for Integration into Lithium-Ion Battery Electrolyte. Batteries 2023, 9, 34. [Google Scholar] [CrossRef]
- Nascimento, M.; Novais, S.; Ding, M.S.; Ferreira, M.S.; Koch, S.; Passerini, S.; Pinto, J.L. Internal Strain and Temperature Discrimination with Optical Fiber Hybrid Sensors in Li-Ion Batteries. J. Power Sources 2019, 410–411, 1–9. [Google Scholar] [CrossRef]
- Lao, J.; Sun, P.; Liu, F.; Zhang, X.; Zhao, C.; Mai, W.; Guo, T.; Xiao, G.; Albert, J. In Situ Plasmonic Optical Fiber Detection of the State of Charge of Supercapacitors for Renewable Energy Storage. Light Sci. Appl. 2018, 7, 34. [Google Scholar] [CrossRef]
- Huang, J.; Albero Blanquer, L.; Bonefacino, J.; Logan, E.R.; Alves Dalla Corte, D.; Delacourt, C.; Gallant, B.M.; Boles, S.T.; Dahn, J.R.; Tam, H.-Y.; et al. Operando Decoding of Chemical and Thermal Events in Commercial Na(Li)-Ion Cells via Optical Sensors. Nat. Energy 2020, 5, 674–683. [Google Scholar] [CrossRef]
- Desai, P.; Huang, J.; Hijazi, H.; Zhang, L.; Mariyappan, S.; Tarascon, J. Deciphering Interfacial Reactions via Optical Sensing to Tune the Interphase Chemistry for Optimized Na-Ion Electrolyte Formulation. Adv. Energy Mater. 2021, 11, 2101490. [Google Scholar] [CrossRef]
- Mei, W.; Liu, Z.; Wang, C.; Wu, C.; Liu, Y.; Liu, P.; Xia, X.; Xue, X.; Han, X.; Sun, J.; et al. Operando Monitoring of Thermal Runaway in Commercial Lithium-Ion Cells via Advanced Lab-on-Fiber Technologies. Nat. Commun. 2023, 14, 5251. [Google Scholar] [CrossRef]
- Nedjalkov, A.; Meyer, J.; Gräfenstein, A.; Schramm, B.; Angelmahr, M.; Schwenzel, J.; Schade, W. Refractive Index Measurement of Lithium Ion Battery Electrolyte with Etched Surface Cladding Waveguide Bragg Gratings and Cell Electrode State Monitoring by Optical Strain Sensors. Batteries 2019, 5, 30. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Z.; Tam, H.-Y.; Tao, X. Multifunctional Smart Optical Fibers: Materials, Fabrication, and Sensing Applications. Photonics 2019, 6, 48. [Google Scholar] [CrossRef]
- Liu, W.; Liu, Z.; Zhang, Y.; Li, S.; Zhang, Y.; Yang, X.; Zhang, J.; Yuan, L. Specialty Optical Fibers and 2D Materials for Sensitivity Enhancement of Fiber Optic SPR Sensors: A Review. Opt. Laser Technol. 2022, 152, 108167. [Google Scholar] [CrossRef]
- Alcock, K.M.; Grammel, M.; González-Vila, Á.; Binetti, L.; Goh, K.; Alwis, L.S.M. An Accessible Method of Embedding Fiber Optic Sensors on Lithium-Ion Battery Surface for in-Situ Thermal Monitoring. Sens. Actuat. A-Phys. 2021, 332, 113061. [Google Scholar] [CrossRef]
- Chen, W.; Hao, J.; Tang, M. Improved Estimate and Accurate Measurement of Thermal Stresses in FRP Tendon. Constr. Build. Mater. 2018, 164, 620–624. [Google Scholar] [CrossRef]
- Chen, W.; Hao, J.; Tang, M. Analytical Analysis of Dynamic Stress Distribution of Fiber Reinforced Polymer Rod Based on Realistic Boundary Shear Stress. Compos. Part B Eng. 2017, 131, 209–220. [Google Scholar] [CrossRef]
- Lai, W.; Cao, L.; Tan, R.X.; Phan, P.T.; Hao, J.; Tjin S., C.; Phee S., J. Force Sensing With 1 mm Fiber Bragg Gratings for Flexible Endoscopic Surgical Robots. IEEE-ASME Trans. Mechatron. 2020, 25, 371–382. [Google Scholar] [CrossRef]
- Chen, W.; Dong, X.; Hao, J.; Yang, F.; Hu, X. Analysis of the Stress Distribution of Crimped Pultruded Composite Rods Subjected to Traction. Compos. Part B Eng. 2013, 50, 362–370. [Google Scholar] [CrossRef]
- Madan, A.; Liu, O.; Jiang, W.; Wang, Y.; Shum, P.P.; Hao, J. Carbon-Steel Tube Surface Mounted FBG Sensors under High-Temperature Environment, Part I: Polyimide Coated and Femtosecond Laser Written. In Proceedings of the 2020 IEEE 5th Optoelectronics Global Conference (OGC), Shenzhen, China, 7 September 2020; pp. 125–129. [Google Scholar]
- Madan, A.; Yap, S.H.K.; Paulose, V.; Chang, W.; Shum, P.P.; Hao, J. Investigation of a Bragg Grating-Based Fabry–Perot Structure Inscribed Using Femtosecond Laser Micromachining in an Adiabatic Fiber Taper. Appl. Sci. 2020, 10, 1069. [Google Scholar] [CrossRef]
- Chen, W.; Hao, J.; Zhang, H. Analytical Solution of Mechanical Behavior of FRP Joint with Arbitrary Bond Length for Optimal Design. Constr. Build. Mater. 2020, 253, 119125. [Google Scholar] [CrossRef]
- Liu, K.; Li, K.; Peng, Q.; Zhang, C. A Brief Review on Key Technologies in the Battery Management System of Electric Vehicles. Front. Mech. Eng. 2019, 14, 47–64. [Google Scholar] [CrossRef]
- Xiong, R.; Yu, Q.; Shen, W.; Lin, C.; Sun, F. A Sensor Fault Diagnosis Method for a Lithium-Ion Battery Pack in Electric Vehicles. IEEE Trans. Power Electron. 2019, 34, 9709–9718. [Google Scholar] [CrossRef]
- Cheng, Y.; D’Arpino, M.; Rizzoni, G. Optimal Sensor Placement for Multifault Detection and Isolation in Lithium-Ion Battery Pack. IEEE Trans. Transp. Electrif. 2022, 8, 4687–4707. [Google Scholar] [CrossRef]
- Yu, Y.; Vergori, E.; Maddar, F.; Guo, Y.; Greenwood, D.; Marco, J. Real-Time Monitoring of Internal Structural Deformation and Thermal Events in Lithium-Ion Cell via Embedded Distributed Optical Fiber. J. Power Sources 2022, 521, 230957. [Google Scholar] [CrossRef]
- Anfinogentov, V.; Karimov, K.; Kuznetsov, A.; Morozov, O.G.; Nureev, I.; Sakhabutdinov, A.; Lipatnikov, K.; Hussein, S.M.R.H.; Ali, M.H. Algorithm of FBG Spectrum Distortion Correction for Optical Spectra Analyzers with CCD Elements. Sensors 2021, 21, 2817. [Google Scholar] [CrossRef]
- Turov, A.T.; Barkov, F.L.; Konstantinov, Y.A.; Korobko, D.A.; Lopez-Mercado, C.A.; Fotiadi, A.A. Activation Function Dynamic Averaging as a Technique for Nonlinear 2D Data Denoising in Distributed Acoustic Sensors. Algorithms 2023, 16, 440. [Google Scholar] [CrossRef]
- Fernández-Ruiz, M.R.; Carballar, A. Fiber Bragg Grating-Based Optical Signal Processing: Review and Survey. Appl. Sci. 2021, 11, 8189. [Google Scholar] [CrossRef]
- Al-Gabalawy, M.; Hosny, N.S.; Dawson, J.A.; Omar, A.I. State of Charge Estimation of a Li-ion Battery Based on Extended Kalman Filtering and Sensor Bias. Int. J. Energy Res. 2021, 45, 6708–6726. [Google Scholar] [CrossRef]
- Hu, J.; Bian, X.; Wei, Z.; Li, J.; He, H. Residual Statistics-Based Current Sensor Fault Diagnosis for Smart Battery Management. IEEE J. Emerg. Sel. Top. Power 2022, 10, 2435–2444. [Google Scholar] [CrossRef]
- Hou, J.; Yang, Y.; Gao, T. A Normal-gamma-based Adaptive Dual Unscented Kalman Filter for Battery Parameters and State-of-charge Estimation with Heavy-tailed Measurement Noise. Int. J. Energy Res. 2020, 44, 3510–3525. [Google Scholar] [CrossRef]
- Cui, Z.; Cui, N.; Wang, C.; Li, C.; Zhang, C. A Robust Online Parameter Identification Method for Lithium-Ion Battery Model Under Asynchronous Sampling and Noise Interference. IEEE Trans. Ind. Electron. 2021, 68, 9550–9560. [Google Scholar] [CrossRef]
- Shen, M.; Gao, Q. A Review on Battery Management System from the Modeling Efforts to Its Multiapplication and Integration. Int. J. Energy Res. 2019, 43, 5042–5075. [Google Scholar] [CrossRef]
- Li, Y.; Li, K.; Liu, X.; Li, X.; Zhang, L.; Rente, B.; Sun, T.; Grattan, K.T.V. A Hybrid Machine Learning Framework for Joint SOC and SOH Estimation of Lithium-Ion Batteries Assisted with Fiber Sensor Measurements. Appl. Energy 2022, 325, 119787. [Google Scholar] [CrossRef]
- Hossain Lipu, M.; Karim, T.; Ansari, S.; Miah, M.; Rahman, M.; Meraj, S.; Elavarasan, R.; Vijayaraghavan, R. Intelligent SOX Estimation for Automotive Battery Management Systems: State-of-the-Art Deep Learning Approaches, Open Issues, and Future Research Opportunities. Energies 2022, 16, 23. [Google Scholar] [CrossRef]
- Alcock, K.M.; González-Vila, Á.; Beg, M.; Vedreño-Santos, F.; Cai, Z.; Alwis, L.S.M.; Goh, K. Individual Cell-Level Temperature Monitoring of a Lithium-Ion Battery Pack. Sensors 2023, 23, 4306. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, X.; Li, K.; Du, D.; Zheng, M.; Niu, Q.; Yang, Y.; Zhou, Q.; Sun, T.; Grattan, K.T.V. Real-Time Battery Temperature Monitoring Using FBG Sensors: A Data-Driven Calibration Method. IEEE Sens. J. 2022, 22, 18639–18648. [Google Scholar] [CrossRef]
- Wei, Z.; Hu, J.; He, H.; Yu, Y.; Marco, J. Embedded Distributed Temperature Sensing Enabled Multistate Joint Observation of Smart Lithium-Ion Battery. IEEE Trans. Ind. Electron. 2023, 70, 555–565. [Google Scholar] [CrossRef]
- Wu, M.; Chen, Y.; Zhu, P.; Chen, W. NLM Parameter Optimization for φ-OTDR Signal. J. Lightwave Technol. 2022, 40, 6045–6051. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, P.; Yin, Y.; Wu, M.; Yu, K.; Feng, L.; Chen, W. Objective Assessment of IPM Denoising Quality of φ-OTDR Signal. Measurement 2023, 214, 112775. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, S.; Yu, K.; Wu, M.; Feng, L.; Zhu, P.; Chen, W. Quantitative Analysis of φ-OTDR Spatial Resolution Influenced by NLM Parameters. Photonics 2023, 10, 529. [Google Scholar] [CrossRef]
- Yu, K.; Feng, L.; Chen, Y.; Wu, M.; Zhang, Y.; Zhu, P.; Chen, W.; Wu, Q.; Hao, J. Accurate Wavelet Thresholding Method for ECG Signals. Comput. Biol. Med. 2024, 169, 107835. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, K.; Wu, M.; Feng, L.; Zhang, Y.; Zhu, P.; Chen, W.; Hao, J. Wavelet Decomposition Layer Selection for the φ-OTDR Signal. Photonics 2024, 11, 137. [Google Scholar] [CrossRef]
- Astafev, E.A. Measurements and Analysis of Electrochemical Noise of Li-Ion Battery. Russ. J. Electrochem. 2019, 55, 488–495. [Google Scholar] [CrossRef]
- Hua, X.; Thomas, A.; Shultis, K. Recent Progress in Battery Electric Vehicle Noise, Vibration, and Harshness. Sci. Prog. 2021, 104, 003685042110052. [Google Scholar] [CrossRef]
- Raghavan, A.; Kiesel, P.; Sommer, L.W.; Schwartz, J.; Lochbaum, A.; Hegyi, A.; Schuh, A.; Arakaki, K.; Saha, B.; Ganguli, A.; et al. Embedded Fiber-Optic Sensing for Accurate Internal Monitoring of Cell State in Advanced Battery Management Systems Part 1: Cell Embedding Method and Performance. J. Power Sources 2017, 341, 466–473. [Google Scholar] [CrossRef]
- Edström, K.; Dominko, R.; Fichtner, M.; Perraud, S. Battery 2030+ Roadmap; Uppsala University: Uppsala, Sweden, 2020; pp. 45–46. [Google Scholar]
- Fichtner, M.; Edström, K.; Ayerbe, E.; Berecibar, M.; Bhowmik, A.; Castelli, I.E.; Clark, S.; Dominko, R.; Erakca, M.; Franco, A.A.; et al. Rechargeable Batteries of the Future—The State of the Art from a BATTERY 2030+ Perspective. Adv. Energy Mater. 2022, 12, 2102904. [Google Scholar] [CrossRef]
- Xu, J.; Ma, J.; Zhao, X.; Chen, H.; Xu, B.; Wu, X. Detection Technology for Battery Safety in Electric Vehicles: A Review. Energies 2020, 13, 4636. [Google Scholar] [CrossRef]
Year | Battery Type | Measured Parameter | Accuracy | Sensitivity | Ref. |
---|---|---|---|---|---|
2016 | Li-ion Pouch Battery | External and internal temperatures | 0.1 °C | 10.27 pm/°C | [13] |
2018 | Li-ion Cylindrical Battery | Internal temperatures | - | - | [115] |
2018 | Li-ion Cylindrical Battery | Internal temperatures | 1 °C | 11 pm/°C | [116] |
2022 | Li-ion Cylindrical Battery | Internal temperatures | 0.5 °C | 9.89 pm/°C | [117] |
2023 | Hardcase Li-ion Batteries | External and internal temperatures | 0.5 °C | 9.8 ± 0.2 pm/°C | [15] |
2016 | Li-ion Pouch Battery | Internal strain | - | - | [118] |
2022 | Swagelok Battery | Internal strain | - | - | [120] |
2022 | Li–S Pouch Battery | Internal strain | - | 0.847 pm/ | [70] |
2022 | Li-ion Battery | Internal temperatures | - | 11 ± 0.3 pm/°C | [121] |
2017 | Li-ion Coin Battery | Internal temperature and strain | - | - | [24] |
2019 | Li-ion Pouch Battery | Internal temperature and strain | 0.1 °C, 0.1 | 40 pm/°C, 2.2 pm/ | [122] |
2022 | Li-ion Coin Battery | Internal temperature and strain | - | 11.7 pm/°C, 11.3 pm/°C, 1.04 pm/ | [112] |
2023 | Li-ion Pouch Battery | Internal temperature and strain | 10.3 pm/°C | [126] | |
2020 | Li-ion Cylindrical Battery | Internal temperature and pressure | 0.1 °C, 0.14 bar | −2.7 pm/bar (MOF), −0.3 pm/bar (SMF), 10 pm/°C (SMF), 10 pm/°C (MOF) | [124] |
2021 | Sodium-ion Cylindrical Battery | Internal temperatures and pressure | 0.1 °C | −2.7 pm/bar (MOF), −0.3 pm/bar (SMF) | [125] |
2019 | Li-ion Pouch Battery | Electrolyte RI | - | - | [127] |
2022 | Aqueous Zn-ion Batteries | Electrolyte RI | - | - | [110] |
2024 | Lithium Metal Battery | Electrolyte RI | - | - | [111] |
2021 | Li-ion Cylindrical Battery | Internal temperature and electrolyte RI | 6 × 10−5 RIU | −18 nm/RIU, 10.1 pm/°C | [90] |
2016 | Li-ion Pouch Battery | SOC | - | - | [119] |
2018 | Supercapacitors | SOC | - | - | [123] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, K.; Chen, W.; Deng, D.; Wu, Q.; Hao, J. Advancements in Battery Monitoring: Harnessing Fiber Grating Sensors for Enhanced Performance and Reliability. Sensors 2024, 24, 2057. https://doi.org/10.3390/s24072057
Yu K, Chen W, Deng D, Wu Q, Hao J. Advancements in Battery Monitoring: Harnessing Fiber Grating Sensors for Enhanced Performance and Reliability. Sensors. 2024; 24(7):2057. https://doi.org/10.3390/s24072057
Chicago/Turabian StyleYu, Kaimin, Wen Chen, Dingrong Deng, Qihui Wu, and Jianzhong Hao. 2024. "Advancements in Battery Monitoring: Harnessing Fiber Grating Sensors for Enhanced Performance and Reliability" Sensors 24, no. 7: 2057. https://doi.org/10.3390/s24072057
APA StyleYu, K., Chen, W., Deng, D., Wu, Q., & Hao, J. (2024). Advancements in Battery Monitoring: Harnessing Fiber Grating Sensors for Enhanced Performance and Reliability. Sensors, 24(7), 2057. https://doi.org/10.3390/s24072057