User Orientation Detection in Relation to Antenna Geometry in Ultra-Wideband Wireless Body Area Networks Using Deep Learning
Abstract
:1. Introduction
2. UWB Technique
2.1. UWB Devices
2.2. UWB Applications
3. Method for Detection of Localization of Users
- the range estimation method—uses estimated distance variance measurements and time series measurements to compare with a certain threshold;
- the radio channel parameter method—identifies the channel by analyzing the parameters of the received radio signal, i.e., the received signal power, the power of the first component of multipath propagation, the average delay and the amplitude and signal to noise ratio (SNR) in the receiver;
- the building maps method—identifies the channel by observing the previous position of the mobile user or the environment.
- the direct path detection method—finds the direct path of the received signal reaching the receiver via various paths; the direct path usually provides more accurate information as compared to the multipath propagation component of the received signal with the highest power;
- statistical methods using least squares, weighted least squares, Taylor series, the linear programming approach and filtering.
3.1. Measurement Setup
3.2. Measurement Scenarios
3.3. Threshold Methods
3.4. Deep Learning Methods
3.4.1. Training, Validation and Testing of Neural Networks
- the value of the loss function is greater than or equal to the previous smallest value of the loss function, or
- the absolute difference between the value of the loss function and the value of the loss function from the previous iteration is less than the set threshold,
3.4.2. Input and Output Data
3.4.3. Hyperparameter Tuning
- Learning rate: 0.0001;
- Training batch size: 64;
- Number of cross-validation iterations: 5;
- Optimization algorithm: Adam;
- Activation function: ReLU;
- Depth of the convolution part: 1;
- Number of filters: 10;
- Convolution kernel size: 4;
- Reduction layer kernel size: 2;
- Kernel shift of the reduction layer: 2.
3.5. Performance Metrics
4. Experimental Results
4.1. Measurement Campaign Results
4.2. Accuracy of LoS and NLoS Condition Classification for Threshold Method
4.2.1. Threshold Method Proposed by Decawave
4.2.2. Effect of Threshold Changes on Classification Accuracy
4.3. Accuracy of Classification of NLoS Conditions with Use of Deep Learning Methods
4.3.1. Results of Selecting Hyperparameters by Grid Search
4.3.2. Deep Learning Model Accuracy
4.3.3. Effect of Using Power of Received Signals in Input Layer
4.4. Antenna Orientation Angle Classification Accuracy
4.5. Antenna Orientation Angle Accuracy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, D.H.; Kwon, G.R.; Pyun, J.Y.; Kim, J.W. NLOS Identification in UWB channel for Indoor Positioning. In Proceedings of the 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 12–15 January 2018; pp. 1–4. [Google Scholar]
- Che, F.; Ahmed, A.; Ahmed, Q.Z.; Zaidi, S.A.R.; Shakir, M.Z. Machine Learning Based Approach for Indoor Localization Using Ultra-Wide Bandwidth (UWB) System for Industrial Internet of Things (IIoT). In Proceedings of the 2020 International Conference on UK-China Emerging Technologies (UCET), Glasgow, UK, 20–21 August 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Cwalina, K.K.; Olejniczak, A.; Blaszkiewicz, O.; Rajchowski, P.; Sadowski, J. Fast Fading Influence on the Deep Learning-Based LOS and NLOS Identification in Wireless Body Area Networks. In Proceedings of the 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Rome, Italy, 28 August–4 September 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Cwalina, K.K.; Rajchowski, P.; Blaszkiewicz, O.; Olejniczak, A.; Sadowski, J. Deep Learning-Based LOS and NLOS Identification in Wireless Body Area Networks. Sensors 2019, 19, 4229. [Google Scholar] [CrossRef] [PubMed]
- ETSI EN 302 065-1 V2.1.1:2016; Short Range DEvices (SRD) Using Ultra Wide Band Technology (UWB); Harmonised Standard Covering the Essential Requirements of Article 3.2 of the Directive 2014/53/EU; Part 1: Requirements for Generic UWB Applications. European Telecommunications Standards Institute. Available online: https://www.etsi.org/deliver/etsi_en/302000_302099/30206501/02.01.01_60/en_30206501v020101p.pdf (accessed on 11 January 2024).
- ETSI EN 303 883 V1.1.1:2016; Short Range Devices (SRD) Using Ultra Wide Band (UWB); Measurement Techniques. European Telecommunications Standards Institute. Available online: https://www.etsi.org/deliver/etsi_en/302000_302099/30206501/02.01.01_60/en_30206501v020101p.pdf (accessed on 11 January 2024).
- 2007/131/EC: Commission Decision of 21 February 2007 on Allowing the Use of the Radio Spectrum for Equipment Using Ultra-Wideband Technology in a Harmonised Manner in the Community (Notified under Document Number C(2007) 522). Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32007D0131 (accessed on 11 January 2024).
- IEEE 802.15.6-2012; IEEE Standard for Local and Metropolitan Area Networks—Part 15.6: Wireless Body Area Networks. IEEE: Piscataway, NJ, USA, 2012.
- Ruiz, A.R.J.; Granja, F.S. Comparing Ubisense, BeSpoon, and DecaWave UWB Location Systems: Indoor Performance Analysis. IEEE Trans. Instrum. Meas. 2017, 66, 2106–2117. [Google Scholar] [CrossRef]
- Jafari, R.; Gilani, K. Body sensor networks and ultra wideband communication. In Proceedings of the 2008 IEEE International Conference on Ultra-Wideband, Hannover, Germany, 10–12 September 2008; pp. 9–10. [Google Scholar] [CrossRef]
- Jiménez, A.R.; Seco, F. Finding objects using UWB or BLE localization technology: A museum-like use case. In Proceedings of the 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo, Japan, 18–21 September 2017; pp. 1–8. [Google Scholar] [CrossRef]
- Tan, K.M.; Law, C.L. GPS and UWB Integration for indoor positioning. In Proceedings of the 2007 6th International Conference on Information, Communications & Signal Processing, Singapore, 10–13 December 2007; pp. 1–5. [Google Scholar] [CrossRef]
- Prithviraj. UWB application for precision automobile parking system. In Proceedings of the 2008 International Conference on Recent Advances in Microwave Theory and Applications, Jaipur, India, 21–24 November 2008; p. 326. [Google Scholar] [CrossRef]
- Kolakowski, J.; Djaja-Josko, V.; Kolakowski, M. UWB Monitoring System for AAL Applications. Sensors 2017, 17, 2092. [Google Scholar] [CrossRef] [PubMed]
- Nezirovic, A.; Yarovoy, A.G.; Ligthart, L.P. Experimental study on human being detection using UWB radar. In Proceedings of the 2006 International Radar Symposium, Krakow, Poland, 24–26 May 2006; pp. 1–4. [Google Scholar] [CrossRef]
- Li, J.; Zeng, Z.; Sun, J.; Liu, F. Through-Wall Detection of Human Being’s Movement by UWB Radar. IEEE Geosci. Remote Sens. Lett. 2012, 9, 1079–1083. [Google Scholar] [CrossRef]
- Yarovoy, A.G.; Matuzas, J.; Levitas, B.; Ligthart, L.P. UWB radar for human being detection. In Proceedings of the European Radar Conference, 2005. EURAD 2005, Paris, France, 3–4 October 2005; pp. 85–88. [Google Scholar] [CrossRef]
- Djaja-Josko, V.; Kolakowski, M. A new map based method for NLOS mitigation in the UWB indoor localization system. In Proceedings of the 2017 25th Telecommunication Forum (TELFOR), Belgrade, Serbia, 21–22 November 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Jiang, C.; Shen, J.; Chen, S.; Chen, Y.; Liu, D.; Bo, Y. UWB NLOS/LOS classification using deep learning method. IEEE Commun. Lett. 2020, 24, 2226–2230. [Google Scholar] [CrossRef]
- Kolakowski, M.; Modelski, J. Detection of direct path component absence in NLOS UWB channel. In Proceedings of the 2018 22nd International Microwave and Radar Conference (MIKON), Poznan, Poland, 14–17 May 2018; pp. 247–250. [Google Scholar] [CrossRef]
- Yang, A.; Zhou, J.; Li, W. Obstacle Recognition with Ultra-Wideband Based on Integrated Learning. In Proceedings of the 2023 IEEE International Conference on Networking, Sensing and Control (ICNSC), Marseille, France, 25–27 October 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Baumann, B. NetLoc: A UWB-Based Localization System for the Internet of Things. Master’s Thesis, TU Graz, Graz, Austria, January 2019. [Google Scholar]
- Sadowski, J. Badanie i Analiza Systemów Radiolokalizacyjnych do Zastosowań Specjalnych; Wydawnictwo Politechniki Gdańskiej: Gdańsk, Poland, 2018. (In Polish) [Google Scholar]
- Stefański, J. Badanie Metod i Projektowanie Usług Lokalizacyjnych w Sieciach Radiokomunikacyjnych; Wydawnictwo Politechniki Gdańskiej: Gdańsk, Poland, 2012. (In Polish) [Google Scholar]
- Maali, A.; Ouldali, A.; Mimoun, H.; Baudoin, G. An evaluation of UWB localization under non line-of-sight (NLOS) propagation. In Proceedings of the 2008 3rd International Symposium on Wireless Pervasive Computing, Santorini, Greece, 7–9 May 2008; pp. 379–382. [Google Scholar] [CrossRef]
- Khodjaev, J.; Park, Y.; Saeed Malik, A. Survey of NLOS identification and error mitigation problems in UWB-based positioning algorithms for dense environments. Ann. Telecommun. 2010, 65, 301–311. [Google Scholar] [CrossRef]
- Al-Jazzar, S.; Caffery, J. New algorithms for NLOS Identification. In Proceedings of the 14th IST Mobile and Wireless Communications Summit, Dresden, Germany, 19–23 June 2005. [Google Scholar]
- DecaWave. APS004 Increasing the Range of DW1000 Using LNA, Version 1.6; DecaWave: Dublin, Ireland, 2018.
- DecaWave. APS017 Max Range in DW1000 Systems, Version 1.0; DecaWave: Dublin, Ireland, 2014.
- DecaWave. APS006 Part 1 Channel Effects on Range Accuracy, Version 1.03; DecaWave: Dublin, Ireland, 2014.
- DecaWave. APS006 Part 2 NLOS Operation and Optimizationsm, Version 1.5; DecaWave: Dublin, Ireland, 2014.
- DecaWave. APS006 Part 3 DW1000 Diagnostics for NLOS Channels, Version 1.03; DecaWave: Dublin, Ireland, 2014.
- DecaWave. DW1000 User Manual, Version 2.18; DecaWave: Dublin, Ireland, 2017.
- Park, J.; Nam, S.; Choi, H.; Ko, Y.; Ko, Y.-B. Improving Deep Learning-Based UWB LOS/NLOS Identification with Transfer Learning: An Empirical Approach. Electronics 2020, 9, 1714. [Google Scholar] [CrossRef]
- Olejniczak, A.; Blaszkiewicz, O.; Cwalina, K.K.; Rajchowski, P.; Sadowski, J. LOS and NLOS identification in real indoor environment using deep learning approach. Digit. Commun. Netw. 2023; in press. [Google Scholar] [CrossRef]
- Cwalina, K.K.; Ambroziak, S.J.; Rajchowski, P.; Correia, L.M. System loss in UWB off-body communications in a ferry environment. In Proceedings of the 2018 Baltic URSI Symposium (URSI), Poznan, Poland, 15–17 May 2018; pp. 55–56. [Google Scholar] [CrossRef]
- Bregar, K.; Hrovat, A.; Mohorčič, M. UWB Radio-Based Motion Detection System for Assisted Living. Sensors 2021, 21, 3631. [Google Scholar] [CrossRef] [PubMed]
- Bregar, K.; Mohorcic, M. Improving indoor localization using convolutional neural networks on computationally restricted devices. IEEE Access 2018, 6, 17429–17441. [Google Scholar] [CrossRef]
- Vales, V.B.; Domínguez-Bolaño, T.; Escudero, C.J.; García-Naya, J.A. Using the Power Delay Profile to Accelerate the Training of Neural Network-Based Classifiers for the Identification of LOS and NLOS UWB Propagation Conditions. IEEE Access 2020, 8, 220205–220214. [Google Scholar] [CrossRef]
- Zeng, Z.; Liu, S.; Wang, L. NLOS Identification for UWB Based on Channel Impulse Response. In Proceedings of the 2018 12th International Conference on Signal Processing and Communication Systems (ICSPCS), Cairns, QLD, Australia, 17–19 December 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Gururaj, K.; Rajendra, A.K.; Song, Y.; Law, C.L.; Cai, G. Real-time identification of NLOS range measurements for enhanced UWB localization. In Proceedings of the 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo, Japan, 18–21 September 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Oppermann, I.; Hömxoxlxoxinen, M.; Iinatti, J. UWB Theory and Applications; John Wiley & Sons: Chichester, UK, 2004. [Google Scholar]
- Yu, K.; Wen, K.; Li, Y.; Zhang, S.; Zhang, K. A novel NLOS mitigation algorithm for UWB localization in harsh indoor environments. IEEE Trans. Veh. Technol. 2018, 68, 686–699. [Google Scholar] [CrossRef]
- Zeng, Z.; Bai, R.; Wang, L.; Liu, S. NLOS identification and mitigation based on CIR with particle filter. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 15–18 April 2019; pp. 1–6. [Google Scholar]
- Krishnan, S.; Xenia Mendoza Santos, R.; Ranier Yap, E.; Thu Zin, M. Improving UWB Based Indoor Positioning in Industrial Environments Through Machine Learning. In Proceedings of the 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, 18–21 November 2018; pp. 1484–1488. [Google Scholar] [CrossRef]
- Stahlke, M.; Kram, S.; Mutschler, C.; Mahr, T. NLOS Detection using UWB Channel Impulse Responses and Convolutional Neural Networks. In Proceedings of the 2020 International Conference on Localization and GNSS (ICL-GNSS), Tampere, Finland, 2–4 June 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; Massachusetts Institute of Technology/The MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Albon, C. Machine Learning with Python Cookbook—Practical Solutions from Preprocessing to Deep Learning; O’Reilly Media: Sebastopol, CA, USA, 2018. [Google Scholar]
- Kim, P. MATLAB Deep Learning: With Machine Learning, Neural Networks and Artificial Intelligence; Apress: Tokyo, Japan, 2017. [Google Scholar]
- Urwan, S. Hyperparameters Selection of the Artificial Intelligence Used in the Radiolocalization System; Engineering Project, Gdańsk University of Technology: Gdańsk, Poland, 2020. (In Polish) [Google Scholar]
- Ledergerber, A.; D’Andrea, R. A Multi-Static Radar Network with Ultra-Wideband Radio-Equipped Devices. Sensors 2020, 20, 1599. [Google Scholar] [CrossRef] [PubMed]
S1 Scenario | |||
---|---|---|---|
NLoS Angle Range [] | Accuracy [%] | Sensitivity [%] | Precision [%] |
90–270 | 89.12 | 97.47 | 79.1 |
135–225 | 85.52 | 76.62 | 99.94 |
S2 Scenario | |||
NLoS Angle Range [] | Accuracy [%] | Sensitivity [%] | Precision [%] |
90–270 | 87.46 | 100 | 75.54 |
135–225 | 89.88 | 83.54 | 99.97 |
S1 Scenario | |||
---|---|---|---|
Model | Accuracy [%] | Sensitivity [%] | Precision [%] |
1 | 99.93 | 99.97 | 99.87 |
2 | 99.96 | 99.97 | 99.93 |
3 | 99.99 | 99.97 | 100 |
4 | 99.87 | 99.97 | 99.7 |
5 | 99.99 | 99.97 | 100 |
Mean | 99.95 | 99.97 | 99.9 |
S2 Scenario | |||
Model | Accuracy [%] | Sensitivity [%] | Precision [%] |
1 | 99.99 | 100 | 99.97 |
2 | 99.96 | 100 | 99.9 |
3 | 99.97 | 100 | 99.93 |
4 | 99.97 | 100 | 99.93 |
5 | 99.97 | 100 | 99.93 |
Mean | 99.97 | 100 | 99.93 |
Scenario | Neural Network | Avg. Classification Acc. | Max. Error [] |
---|---|---|---|
S1 | MLP | 95.7% | ⩽25 |
S1 | CNN | 98.8% | ⩽37 |
S2 | MLP | 95.3% | ⩽26 |
S2 | CNN | 96.8% | ⩽18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urwan, S.; Cwalina, K.K. User Orientation Detection in Relation to Antenna Geometry in Ultra-Wideband Wireless Body Area Networks Using Deep Learning. Sensors 2024, 24, 2060. https://doi.org/10.3390/s24072060
Urwan S, Cwalina KK. User Orientation Detection in Relation to Antenna Geometry in Ultra-Wideband Wireless Body Area Networks Using Deep Learning. Sensors. 2024; 24(7):2060. https://doi.org/10.3390/s24072060
Chicago/Turabian StyleUrwan, Sebastian, and Krzysztof K. Cwalina. 2024. "User Orientation Detection in Relation to Antenna Geometry in Ultra-Wideband Wireless Body Area Networks Using Deep Learning" Sensors 24, no. 7: 2060. https://doi.org/10.3390/s24072060
APA StyleUrwan, S., & Cwalina, K. K. (2024). User Orientation Detection in Relation to Antenna Geometry in Ultra-Wideband Wireless Body Area Networks Using Deep Learning. Sensors, 24(7), 2060. https://doi.org/10.3390/s24072060