Evaluation of Low-Cost CO2 Sensors Using Reference Instruments and Standard Gases for Indoor Use
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensor Deployment
2.2. Sensor Calibration and Evaluation Parameters
3. Results
3.1. Daily to Monthly Comparisons with Standard Gases
3.2. Daily to Yearly Comparisons with Standard Gases
3.3. Monthly Comparisons to Standard Instruments (Picarro)
3.4. Yearly Comparison to Standard Instruments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duren, R.M.; Miller, C.E. Measuring the Carbon Emissions of Megacities. Nat. Clim. Chang. 2012, 2, 560–562. [Google Scholar] [CrossRef]
- Rogelj, J.; Shindell, D.; Jiang, K.; Fifita, S.; Forster, P.; Ginzburg, V.; Handa, C.; Kheshgi, H.; Kobayashi, S.; Kriegler, E.; et al. Mitigation Pathways Compatible with 1.5 °C in the Context of Sustainable Development. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2018; pp. 93–174. [Google Scholar]
- Karion, A.; Callahan, W.; Stock, M.; Prinzivalli, S.; Verhulst, K.R.; Kim, J.; Salameh, P.K.; Lopez-Coto, I.; Whetstone, J. Greenhouse Gas Observations from the Northeast Corridor Tower Network. Earth Syst. Sci. Data 2020, 12, 699–717. [Google Scholar] [CrossRef]
- Xueref-Remy, I.; Dieudonné, E.; Vuillemin, C.; Lopez, M.; Lac, C.; Schmidt, M.; Delmotte, M.; Chevallier, F.; Ravetta, F.; Perrussel, O.; et al. Diurnal, Synoptic and Seasonal Variability of Atmospheric CO2 in the Paris Megacity Area. Atmos. Chem. Phys. 2018, 18, 3335–3362. [Google Scholar] [CrossRef]
- Verhulst, K.R.; Karion, A.; Kim, J.; Salameh, P.K.; Keeling, R.F.; Newman, S.; Miller, J.; Sloop, C.; Pongetti, T.; Rao, P.; et al. Carbon Dioxide and Methane Measurements from the Los Angeles Megacity Carbon Project—Part 1: Calibration, Urban Enhancements, and Uncertainty Estimates. Atmos. Chem. Phys. 2017, 17, 8313–8341. [Google Scholar] [CrossRef] [PubMed]
- Turnbull, J.C.; Karion, A.; Davis, K.J.; Lauvaux, T.; Miles, N.L.; Richardson, S.J.; Sweeney, C.; McKain, K.; Lehman, S.J.; Gurney, K.R.; et al. Synthesis of Urban CO2 Emission Estimates from Multiple Methods from the Indianapolis Flux Project (INFLUX). Environ. Sci. Technol. 2019, 53, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Kunik, L.; Mallia, D.V.; Gurney, K.R.; Mendoza, D.L.; Oda, T.; Lin, J.C. Bayesian Inverse Estimation of Urban CO2 Emissions: Results from a Synthetic Data Simulation over Salt Lake City, UT. Elem. Sci. Anthr. 2019, 7, 36. [Google Scholar] [CrossRef]
- Mitchell, L.E.; Lin, J.C.; Hutyra, L.R.; Bowling, D.R.; Cohen, R.C.; Davis, K.J.; DiGangi, E.; Duren, R.M.; Ehleringer, J.R.; Fain, C.; et al. A Multi-City Urban Atmospheric Greenhouse Gas Measurement Data Synthesis. Sci. Data 2022, 9, 361. [Google Scholar] [CrossRef] [PubMed]
- Lauvaux, T.; Miles, N.L.; Deng, A.; Richardson, S.J.; Cambaliza, M.O.; Davis, K.J.; Gaudet, B.; Gurney, K.R.; Huang, J.; O’Keefe, D.; et al. High-Resolution Atmospheric Inversion of Urban CO2 Emissions during the Dormant Season of the Indianapolis Flux Experiment (INFLUX). J. Geophys. Res. Atmos. 2016, 121, 5213–5236. [Google Scholar] [CrossRef] [PubMed]
- Lauvaux, T.; Gurney, K.R.; Miles, N.L.; Davis, K.J.; Richardson, S.J.; Deng, A.; Nathan, B.J.; Oda, T.; Wang, J.A.; Hutyra, L.; et al. Policy-Relevant Assessment of Urban CO2 Emissions. Environ. Sci. Technol. 2020, 54, 10237–10245. [Google Scholar] [CrossRef]
- Gurney, K.R.; Razlivanov, I.; Song, Y.; Zhou, Y.; Benes, B.; Abdul-Massih, M. Quantification of Fossil Fuel CO2 Emissions on the Building/Street Scale for a Large U.S. City. Environ. Sci. Technol. 2012, 46, 12194–12202. [Google Scholar] [CrossRef]
- Kellett, R.; Christen, A.; Coops, N.C.; van der Laan, M.; Crawford, B.; Tooke, T.R.; Olchovski, I. A Systems Approach to Carbon Cycling and Emissions Modeling at an Urban Neighborhood Scale. Landsc. Urban Plan. 2013, 110, 48–58. [Google Scholar] [CrossRef]
- Wada, R.; Pearce, J.K.; Nakayama, T.; Matsumi, Y.; Hiyama, T.; Inoue, G.; Shibata, T. Observation of Carbon and Oxygen Isotopic Compositions of CO2 at an Urban Site in Nagoya Using Mid-IR Laser Absorption Spectroscopy. Atmos. Environ. 2011, 45, 1168–1174. [Google Scholar] [CrossRef]
- Grimmond, C.S.B.; King, T.S.; Cropley, F.D.; Nowak, D.J.; Souch, C. Local-Scale Fluxes of Carbon Dioxide in Urban Environments: Methodological Challenges and Results from Chicago. Environ. Pollut. 2002, 116, S243–S254. [Google Scholar] [CrossRef] [PubMed]
- Lateb, M.; Meroney, R.N.; Yataghene, M.; Fellouah, H.; Saleh, F.; Boufadel, M.C. On the Use of Numerical Modelling for Near-Field Pollutant Dispersion in Urban Environments–A Review. Environ. Pollut. 2016, 208 Pt A, 271–283. [Google Scholar] [CrossRef]
- Miles, N.L.; Davis, K.J.; Richardson, S.J.; Lauvaux, T.; Martins, D.K.; Deng, A.J.; Balashov, N.; Gurney, K.R.; Liang, J.; Roest, G.; et al. The Influence of Near-Field Fluxes on Seasonal Carbon Dioxide Enhancements: Results from the Indianapolis Flux Experiment (INFLUX). Carbon Balance Manag. 2021, 16, 4. [Google Scholar] [CrossRef] [PubMed]
- Zeng, N.; Han, P.; Liu, Z.; Liu, D.; Oda, T.; Martin, C.R.; Liu, Z.; Yao, B.; Sun, W.; Wang, P.C.; et al. Global to Local Impacts on Atmospheric CO2 from the COVID-19 Lockdown, Biosphere and Weather Variabilities. Environ. Res. Lett. 2021, 17, 015003. [Google Scholar] [CrossRef]
- Turner, A.J.; Shusterman, A.A.; McDonald, B.C.; Teige, V.; Harley, R.A.; Cohen, R.C. Network Design for Quantifying Urban CO2 Emissions: Assessing Trade-Offs between Precision and Network Density. Atmos. Chem. Phys. 2016, 16, 13465–13475. [Google Scholar] [CrossRef]
- Wu, L.; Broquet, G.; Ciais, P.; Bellassen, V.; Vogel, F.; Chevallier, F.; Xueref-Remy, I.; Wang, Y. What Would Dense Atmospheric Observation Networks Bring to the Quantification of City CO2 Emissions? Atmos. Chem. Phys. 2016, 16, 7743–7771. [Google Scholar] [CrossRef]
- Lopez-Coto, I.; Ghosh, S.; Prasad, K.R.; Whetstone, J. Tower-Based Greenhouse Gas Measurement Network Design—The National Institute of Standards and Technology North East Corridor Testbed. Adv. Atmos. Sci. 2017, 34, 1095–1105. [Google Scholar] [CrossRef]
- Shusterman, A.A.; Kim, J.; Lieschke, K.J.; Newman, C.; Wooldridge, P.J.; Cohen, R.C. Observing Local CO2 Sources Using Low-Cost, near-Surface Urban Monitors. Atmos. Chem. Phys. 2018, 18, 13773–13785. [Google Scholar] [CrossRef]
- Müller, M.; Graf, P.; Meyer, J.; Pentina, A.; Brunner, D.; Perez-Cruz, F.; Hüglin, C.; Emmenegger, L. Integration and Calibration of Non-Dispersive Infrared (NDIR) CO2 Low-Cost Sensors and Their Operation in a Sensor Network Covering Switzerland. Atmos. Meas. Tech. 2020, 13, 3815–3834. [Google Scholar] [CrossRef]
- Feng, S.; Qiu, X.; Guo, G.; Zhang, E.; He, Q.; He, X.; Ma, W.; Fittschen, C.; Li, C. Palm-Sized Laser Spectrometer with High Robustness and Sensitivity for Trace Gas Detection Using a Novel Double-Layer Toroidal Cell. Anal. Chem. 2021, 93, 4552–4558. [Google Scholar] [CrossRef] [PubMed]
- Delaria, E.R.; Kim, J.; Fitzmaurice, H.L.; Newman, C.; Wooldridge, P.J.; Worthington, K.; Cohen, R.C. The Berkeley Environmental Air-Quality and CO2 Network: Field Calibrations of Sensor Temperature Dependence and Assessment of Network Scale CO2 Accuracy. Atmos. Meas. Tech. 2021, 14, 5487–5500. [Google Scholar] [CrossRef]
- Shusterman, A.A.; Teige, V.E.; Turner, A.J.; Newman, C.; Kim, J.; Cohen, R.C. The BErkeley Atmospheric CO2 Observation Network: Initial Evaluation. Atmos. Chem. Phys. 2016, 16, 13449–13463. [Google Scholar] [CrossRef]
- He, J.; Li, Z.; Zhang, X.; Wang, H.; Dong, W.; Chang, S.; Ou, X.; Guo, S.; Tian, Z.; Gu, A.; et al. Comprehensive Report on China’s Long-Term Low-Carbon Development Strategies and Pathways. Chin. J. Popul. Resour. Environ. 2020, 18, 263–295. [Google Scholar] [CrossRef]
- Huang, Y.; Sun, W.; Qin, Z.; Zhang, W.; Yu, Y.; Li, T.; Zhang, Q.; Wang, G.; Yu, L.; Wang, Y.; et al. The Role of China’s Terrestrial Carbon Sequestration 2010–2060 in Offsetting Energy-Related CO2 Emissions. Natl. Sci. Rev. 2022, 9, nwac057. [Google Scholar] [CrossRef] [PubMed]
- Zeng, N.; Jiang, K.; Han, P.; Hausfather, Z.; Cao, J.; Kirk-Davidoff, D.; Ali, S.; Zhou, S. The Chinese Carbon-Neutral Goal: Challenges and Prospects. Adv. Atmos. Sci. 2022, 39, 1229–1238. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Ecology and Environment Issued Carbon Monitoring and Assessment Pilot Work Program. Available online: https://www.mee.gov.cn/ywdt/spxw/202109/t20210923_952715.shtml (accessed on 17 January 2024).
- Pengfei, H.; Ning, Z.; Yinan, W.; Xingying, Z.; Bo, Y. Regional Carbon Monitoring for the Beijing-Tianjin-Hebei (JJJ) City Cluster. Available online: https://meetingorganizer.copernicus.org/EGU2018/orals/27498 (accessed on 27 August 2023).
- Liu, D.; Sun, W.; Zeng, N.; Han, P.; Yao, B.; Liu, Z.; Wang, P.; Zheng, K.; Mei, H.; Cai, Q. Observed Decreases in On-Road CO2 Concentrations in Beijing during COVID-19 Restrictions. Atmos. Chem. Phys. 2021, 21, 4599–4614. [Google Scholar] [CrossRef]
- Bao, Z.; Han, P.; Zeng, N.; Liu, D.; Cai, Q.; Wang, Y.; Tang, G.; Zheng, K.; Yao, B. Observation and Modeling of Vertical Carbon Dioxide Distribution in a Heavily Polluted Suburban Environment. Atmos. Ocean. Sci. Lett. 2020, 13, 371–379. [Google Scholar] [CrossRef]
- Hagan, D.H.; Isaacman-VanWertz, G.; Franklin, J.P.; Wallace, L.M.M.; Kocar, B.D.; Heald, C.L.; Kroll, J.H. Calibration and Assessment of Electrochemical Air Quality Sensors by Co-Location with Regulatory-Grade Instruments. Atmos. Meas. Tech. 2018, 11, 315–328. [Google Scholar] [CrossRef]
- Bigi, A.; Mueller, M.; Grange, S.K.; Ghermandi, G.; Hueglin, C. Performance of NO, NO2 Low Cost Sensors and Three Calibration Approaches within a Real World Application. Atmos. Meas. Tech. 2018, 11, 3717–3735. [Google Scholar] [CrossRef]
- Martin, C.R.; Zeng, N.; Karion, A.; Dickerson, R.R.; Ren, X.; Turpie, B.N.; Weber, K.J. Evaluation and Environmental Correction of Ambient CO2 Measurements from a Low-Cost NDIR Sensor. Atmos. Meas. Tech. 2017, 10, 2383–2395. [Google Scholar] [CrossRef] [PubMed]
- SenseAir: K30 Products Sheets. Available online: https://rmtplusstoragesenseair.blob.core.windows.net/docs/publicerat/PSP110.pdf (accessed on 30 January 2024).
- Picarro G4301 Analyzer Datasheet. Available online: https://www.picarro.com/environmental/support/library/documents/gasscoutertm_g4301_analyzer_datasheet?language=en (accessed on 30 January 2024).
- Picarro G2301 Analyzer Datasheet. Available online: https://www.picarro.com/environmental/support/library/documents/g2301_analyzer_datasheet (accessed on 30 January 2024).
- Yang, Y.; Zhou, M.; Wang, T.; Yao, B.; Han, P.; Ji, D.; Zhou, W.; Sun, Y.; Wang, G.; Wang, P. Spatial and Temporal Variations of CO2 Mole Fractions Observed at Beijing, Xianghe, and Xinglong in North China. Atmos. Chem. Phys. 2021, 21, 11741–11757. [Google Scholar] [CrossRef]
Region | Raw Accuracy (ppm) | Corrected Hourly Accuracy (ppm) | Cost Estimated (Thousand USD) | Sensor/Instrument | |
---|---|---|---|---|---|
Carbosense CO2 sensor network | Switzerland | ±50 | 6.8–13.9 | 4–7 | LP8 |
BEACO2N | California, USA | ±3 ppm + 1% reading | 1.6–3.6 | 14 | GMP343 |
LI-COR | USA | 6–12 | 6–12 | 11–14 | LI-830/850 |
SENSE-IAP | Beijing, Jinan, etc., China | ±30 | 0.7–3.3 | 4–7 | K30 |
Station | Intake Height | SENSE-IAP | High-Precision Picarro | |||||
---|---|---|---|---|---|---|---|---|
Analyzer | Precision in 5 min (ppm) | Maximum Drift over 24 h | Calibration Frequency | Evaluation Period of Synchronous Observation | ||||
Beijing-IAP | 6 stories high (18 m) | 3 K30 sensors | G2301 | 0.025 | 0.12 ppm | 1 month | 12 months | |
Jinan | 5 stories high (15 m) | 3 K30 sensors | G4301 | 0.04 ppm + 0.02% value | 0.5 ppm | 1 month | 4 weeks | |
Station | Intake Height | SENSE-IAP | Frequency of verification using standard gas | Evaluation period of synchronous observation | ||||
Beijing-CNEMC | Not applicable | 6 K30 sensors | 1 week | 6 weeks | ||||
Hangzhou | 15m | 3 K30 sensors | 6 h | 22 months |
Instrument | pi674 | pi488 | |||||
---|---|---|---|---|---|---|---|
Sensors | s1 | s2 | s3 | s1 | s2 | s3 | |
Short-term (Daily scale) parameters | Bias | −0.5 | 0.2 | −0.8 | −0.8 | −0.6 | −0.9 |
RMSE | 1.0 | 0.7 | 1.3 | 1.1 | 1.3 | 1.6 | |
Long-term (Monthly scale) parameters | Bias | 0.5 | −0.9 | −1.4 | −1.6 | −1.2 | −1.1 |
RMSE | 1.6 | 1.3 | 2.7 | 3.2 | 2.1 | 1.6 | |
Daily drift (ppm) | −0.06 | −0.06 | −0.14 | −0.1 | −0.09 | −0.09 | |
Hourly drift (ppb) | −2.4 | −2.3 | −5.8 | −4.1 | −3.9 | −3.8 |
Site | Hangzhou | Jinan | BJ-1 1 | BJ-2 1 | BJ-3 2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sensor | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 |
Monthly drift (ppm/month) | −0.3 | −3 | −12 | −0.3 | −3.4 | −1.5 | −1.7 | −4 | −2 | −0.8 | −1.2 | ||||
Daily drift (ppm/day) | <−0.01 | −0.1 | −0.4 | <−0.01 | −0.08 | −0.05 | −0.06 | −0.1 | −0.07 | −0.03 | −0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Q.; Han, P.; Pan, G.; Xu, C.; Yang, X.; Xu, H.; Ruan, D.; Zeng, N. Evaluation of Low-Cost CO2 Sensors Using Reference Instruments and Standard Gases for Indoor Use. Sensors 2024, 24, 2680. https://doi.org/10.3390/s24092680
Cai Q, Han P, Pan G, Xu C, Yang X, Xu H, Ruan D, Zeng N. Evaluation of Low-Cost CO2 Sensors Using Reference Instruments and Standard Gases for Indoor Use. Sensors. 2024; 24(9):2680. https://doi.org/10.3390/s24092680
Chicago/Turabian StyleCai, Qixiang, Pengfei Han, Guang Pan, Chi Xu, Xiaoyu Yang, Honghui Xu, Dongde Ruan, and Ning Zeng. 2024. "Evaluation of Low-Cost CO2 Sensors Using Reference Instruments and Standard Gases for Indoor Use" Sensors 24, no. 9: 2680. https://doi.org/10.3390/s24092680
APA StyleCai, Q., Han, P., Pan, G., Xu, C., Yang, X., Xu, H., Ruan, D., & Zeng, N. (2024). Evaluation of Low-Cost CO2 Sensors Using Reference Instruments and Standard Gases for Indoor Use. Sensors, 24(9), 2680. https://doi.org/10.3390/s24092680