The Impact of Dual-Tasks and Disease Severity on Posture, Gait, and Functional Mobility among People Living with Dementia in Residential Care Facilities: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Eligibility Criteria
2.3. Recruitment
2.4. Measures and Variables
2.5. Posture
2.6. Gait
2.7. Functional Mobility
2.8. Global Cognition
2.9. Descriptive Measures
2.10. Data Analysis
3. Results
3.1. Descriptive Statistics
3.2. The Influence of Dual-Tasks on Posture, Gait, and Functional Mobility by Dementia Severity
3.3. Relationship between Dementia Severity and Dual-Task Interference
4. Discussion
4.1. Main Findings
4.2. The Influence of Dual-Tasks on Posture, Gait, and Functional Mobility in PWD
4.3. The Influence of Dementia Severity on Dual-Task Performance and Dual-Task Interference
4.4. Implications
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Y.T.; Beiser, A.S.; Breteler, M.M.B.; Fratiglioni, L.; Helmer, C.; Hendrie, H.C.; Honda, H.; Ikram, M.A.; Langa, K.M.; Lobo, A.; et al. The changing prevalence and incidence of dementia over time—Current evidence. Nat. Rev. Neurol. 2017, 13, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Felton, N.; Deave, T. The Lived Experience of Healthcare Workers in Preventing Falls in Community Dwelling Individuals with Dementia. Geriatrics 2022, 7, 113. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.X.; Wang, Z.X.; Liu, C.B.; Dai, P.; Lan, Y.; Xu, G.Q. Effect of Cognitive Function on Balance and Posture Control after Stroke. Neural Plast. 2021, 2021, 6636999. [Google Scholar] [CrossRef] [PubMed]
- Kuan, Y.C.; Huang, L.K.; Wang, Y.H.; Hu, C.J.; Tseng, I.J.; Chen, H.C.; Lin, L.F. Balance and gait performance in older adults with early-stage cognitive impairment. Eur. J. Phys. Rehabil. Med. 2021, 57, 560–567. [Google Scholar] [CrossRef] [PubMed]
- van Iersel, M.B.; Hoefsloot, W.; Munneke, M.; Bloem, B.R.; Olde Rikkert, M.G. Systematic review of quantitative clinical gait analysis in patients with dementia. Z. Gerontol. Geriatr. 2004, 37, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, C.A.; Gruber-Baldini, A.L.; Park, N.S.; Schrodt, L.A.; Rokoske, F.; Sloane, P.D.; Zimmerman, S. Physical performance characteristics of assisted living residents and risk for adverse health outcomes. Gerontologist 2008, 48, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Prince, M.; Bryce, R.; Ferri, C. World Alzheimer’s Report 2011. The Benefits of Early Diagnosis and Intervention; Alzheimer’s Disease International: London, UK, 2011. [Google Scholar]
- Phung, T.K.; Waltoft, B.L.; Kessing, L.V.; Mortensen, P.B.; Waldemar, G. Time trend in diagnosing dementia in secondary care. Dement. Geriatr. Cogn. Disord. 2010, 29, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Bradford, A.; Kunik, M.E.; Schulz, P.; Williams, S.P.; Singh, H. Missed and delayed diagnosis of dementia in primary care: Prevalence and contributing factors. Alzheimer Dis. Assoc. Disord. 2009, 23, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Arvanitakis, Z.; Shah, R.C.; Bennett, D.A. Diagnosis and Management of Dementia: Review. JAMA 2019, 322, 1589–1599. [Google Scholar] [CrossRef]
- Prince, M.; Wimo, A.; Guerchet, M.; Ali, G.C.; Wu, Y.T.; Prina, M. World Alzheimer Report 2015: The Global Impact of Dementia: An Analysis of Prevalence, Incidence, Cost & Trends; Alzheimer’s Disease International: London, UK, 2015; pp. 1–87. [Google Scholar]
- Zhuang, L.; Yang, Y.; Gao, J. Cognitive assessment tools for mild cognitive impairment screening. J. Neurol. 2021, 268, 1615–1622. [Google Scholar] [CrossRef]
- Arevalo-Rodriguez, I.; Smailagic, N.; Roqué, I.F.M.; Ciapponi, A.; Sanchez-Perez, E.; Giannakou, A.; Pedraza, O.L.; Bonfill Cosp, X.; Cullum, S. Mini-Mental State Examination (MMSE) for the detection of Alzheimer’s disease and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst. Rev. 2015, 2015, Cd010783. [Google Scholar] [CrossRef] [PubMed]
- Norris, D.; Clark, M.S.; Shipley, S. The Mental Status Examination. Am. Fam. Physician 2016, 94, 635–641. [Google Scholar]
- Andrade, L.P.d.; Rinaldi, N.M.; Coelho, F.G.d.M.; Tanaka, K.; Stella, F.; Gobbi, L.T.B. Dual task and postural control in Alzheimer’s and Parkinson’s disease. Mot. Rev. Educ. Física 2014, 20, 78–84. [Google Scholar] [CrossRef]
- Oh, C. Single-Task or Dual-Task? Gait Assessment as a Potential Diagnostic Tool for Alzheimer’s Dementia. J. Alzheimer’s Dis. 2021, 84, 1183–1192. [Google Scholar] [CrossRef] [PubMed]
- Sui, S.X.; Hendy, A.M.; Teo, W.P.; Moran, J.T.; Nuzum, N.D.; Pasco, J.A. A Review of the Measurement of the Neurology of Gait in Cognitive Dysfunction or Dementia, Focusing on the Application of fNIRS during Dual-Task Gait Assessment. Brain Sci. 2022, 12, 968. [Google Scholar] [CrossRef] [PubMed]
- Jor’dan, A.J.; McCarten, J.R.; Rottunda, S.; Stoffregen, T.A.; Manor, B.; Wade, M.G. Dementia alters standing postural adaptation during a visual search task in older adult men. Neurosci. Lett. 2015, 593, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhu, J.; Liu, J.; Shi, M.; Liu, P.; Guo, J.; Hu, Z.; Liu, S.; Yang, D. Using dual-task gait to recognize Alzheimer’s disease and mild cognitive impairment: A cross-sectional study. Front. Hum. Neurosci. 2023, 17, 1284805. [Google Scholar] [CrossRef]
- Montero-Odasso, M.M.; Sarquis-Adamson, Y.; Speechley, M.; Borrie, M.J.; Hachinski, V.C.; Wells, J.; Riccio, P.M.; Schapira, M.; Sejdic, E.; Camicioli, R.M.; et al. Association of Dual-Task Gait with Incident Dementia in Mild Cognitive Impairment: Results From the Gait and Brain Study. JAMA Neurol. 2017, 74, 857–865. [Google Scholar] [CrossRef] [PubMed]
- Muir, S.W.; Speechley, M.; Wells, J.; Borrie, M.; Gopaul, K.; Montero-Odasso, M. Gait assessment in mild cognitive impairment and Alzheimer’s disease: The effect of dual-task challenges across the cognitive spectrum. Gait Posture 2012, 35, 96–100. [Google Scholar] [CrossRef]
- Bahureksa, L.; Najafi, B.; Saleh, A.; Sabbagh, M.; Coon, D.; Mohler, M.J.; Schwenk, M. The Impact of Mild Cognitive Impairment on Gait and Balance: A Systematic Review and Meta-Analysis of Studies Using Instrumented Assessment. Gerontology 2017, 63, 67–83. [Google Scholar] [CrossRef]
- Hunter, S.W.; Omana, H.; Madou, E.; Wittich, W.; Hill, K.D.; Johnson, A.M.; Divine, A.; Holmes, J.D. Effect of dual-tasking on walking and cognitive demands in adults with Alzheimer’s dementia experienced in using a 4-wheeled walker. Gait Posture 2020, 77, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Åhman, H.B.; Cedervall, Y.; Kilander, L.; Giedraitis, V.; Berglund, L.; McKee, K.J.; Rosendahl, E.; Ingelsson, M.; Åberg, A.C. Dual-task tests discriminate between dementia, mild cognitive impairment, subjective cognitive impairment, and healthy controls—A cross-sectional cohort study. BMC Geriatr. 2020, 20, 258. [Google Scholar] [CrossRef] [PubMed]
- Cedervall, Y.; Stenberg, A.M.; Åhman, H.B.; Giedraitis, V.; Tinmark, F.; Berglund, L.; Halvorsen, K.; Ingelsson, M.; Rosendahl, E.; Åberg, A.C. Timed Up-and-Go Dual-Task Testing in the Assessment of Cognitive Function: A Mixed Methods Observational Study for Development of the UDDGait Protocol. Int. J. Environ. Res. Public Health 2020, 17, 1715. [Google Scholar] [CrossRef] [PubMed]
- Nualyong, T.; Siriphorn, A. Accuracy of the figure of 8 walk test with and without dual-task to predict falls in older adults. J. Bodyw. Mov. Ther. 2022, 30, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Muir-Hunter, S.W.; Wittwer, J.E. Dual-task testing to predict falls in community-dwelling older adults: A systematic review. Physiotherapy 2016, 102, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Menant, J.C.; Schoene, D.; Sarofim, M.; Lord, S.R. Single and dual task tests of gait speed are equivalent in the prediction of falls in older people: A systematic review and meta-analysis. Ageing Res. Rev. 2014, 16, 83–104. [Google Scholar] [CrossRef] [PubMed]
- Asai, T.; Oshima, K.; Fukumoto, Y.; Yonezawa, Y.; Matsuo, A.; Misu, S. Does dual-tasking provide additional value in timed “up and go” test for predicting the occurrence of falls? A longitudinal observation study by age group (young-older or old-older adults). Aging Clin. Exp. Res. 2021, 33, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Presta, V.; Galuppo, L.; Condello, G.; Rodà, F.; Mirandola, P.; Vitale, M.; Vaccarezza, M.; Gobbi, G. Receiver Operating Characteristic Analysis of Posture and Gait Parameters to Prevent Frailty Condition and Fall Risk in the Elderly. Appl. Sci. 2023, 13, 3387. [Google Scholar] [CrossRef]
- Lajoie, Y.; Jehu, D.A.; Richer, N.; Chan, A. Continuous and difficult discrete cognitive tasks promote improved stability in older adults. Gait Posture 2017, 55, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Lajoie, Y.; Richer, N.; Jehu, D.A.; Tran, Y. Continuous Cognitive Tasks Improve Postural Control Compared to Discrete Cognitive Tasks. J Mot. Behav. 2016, 48, 264–269. [Google Scholar] [CrossRef]
- Boisgontier, M.P.; Beets, I.A.; Duysens, J.; Nieuwboer, A.; Krampe, R.T.; Swinnen, S.P. Age-related differences in attentional cost associated with postural dual tasks: Increased recruitment of generic cognitive resources in older adults. Neurosci. Biobehav. Rev. 2013, 37, 1824–1837. [Google Scholar] [CrossRef] [PubMed]
- Manckoundia, P.; Pfitzenmeyer, P.; d’Athis, P.; Dubost, V.; Mourey, F. Impact of cognitive task on the posture of elderly subjects with Alzheimer’s disease compared to healthy elderly subjects. Mov. Disord. 2006, 21, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Mesbah, N.; Perry, M.; Hill, K.D.; Kaur, M.; Hale, L. Postural Stability in Older Adults with Alzheimer Disease. Phys. Ther. 2017, 97, 290–309. [Google Scholar] [CrossRef] [PubMed]
- Ijmker, T.; Lamoth, C.J. Gait and cognition: The relationship between gait stability and variability with executive function in persons with and without dementia. Gait Posture 2012, 35, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Guan, D.X.; Chen, H.Y.; Camicioli, R.; Montero-Odasso, M.; Smith, E.E.; Ismail, Z. Dual-task gait and mild behavioral impairment: The interface between non-cognitive dementia markers. Exp. Gerontol. 2022, 162, 111743. [Google Scholar] [CrossRef] [PubMed]
- Tramontano, M.; Morone, G.; Curcio, A.; Temperoni, G.; Medici, A.; Morelli, D.; Caltagirone, C.; Paolucci, S.; Iosa, M. Maintaining gait stability during dual walking task: Effects of age and neurological disorders. Eur. J. Phys. Rehabil. Med. 2017, 53, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Pettersson, A.F.; Olsson, E.; Wahlund, L.O. Motor function in subjects with mild cognitive impairment and early Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 2005, 19, 299–304. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Silva, F.; Ferreira, J.V.; Plácido, J.; Deslandes, A.C. Spatial navigation and dual-task performance in patients with Dementia that present partial dependence in instrumental activity of daily living. IBRO Rep. 2020, 9, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Rucco, R.; Agosti, V.; Jacini, F.; Sorrentino, P.; Varriale, P.; De Stefano, M.; Milan, G.; Montella, P.; Sorrentino, G. Spatio-temporal and kinematic gait analysis in patients with Frontotemporal dementia and Alzheimer’s disease through 3D motion capture. Gait Posture 2017, 52, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Susilowati, I.H.; Nugraha, S.; Sabarinah, S.; Peltzer, K.; Pengpid, S.; Hasiholan, B.P. Prevalence and risk factors associated with falls among community-dwelling and institutionalized older adults in Indonesia. Malays. Fam. Physician 2020, 15, 30–38. [Google Scholar]
- Dyer, S.M.; Crotty, M.; Fairhall, N.; Magaziner, J.; Beaupre, L.A.; Cameron, I.D.; Sherrington, C. A critical review of the long-term disability outcomes following hip fracture. BMC Geriatr. 2016, 16, 158. [Google Scholar] [CrossRef] [PubMed]
- Jehu, D.A.; Dong, Y.; Zhu, H.; Huang, Y.; Soares, A.; Patel, C.; Aden, Z.; Hergott, C.; Ange, B.; Waller, J.L.; et al. The effects of strEngth aNd BaLance exercise on executive function in people living with dementia (ENABLED): Study protocol for a pilot randomized controlled trial. Contemp. Clin. Trials 2023, 130, 107220. [Google Scholar] [CrossRef] [PubMed]
- Kobsar, D.; Charlton, J.M.; Tse, C.T.F.; Esculier, J.F.; Graffos, A.; Krowchuk, N.M.; Thatcher, D.; Hunt, M.A. Validity and reliability of wearable inertial sensors in healthy adult walking: A systematic review and meta-analysis. J. Neuroeng. Rehabil. 2020, 17, 62. [Google Scholar] [CrossRef] [PubMed]
- Lezak, M.; Howieson, D.; Bigler, E.; Tranel, D. Neuropsychological Assessment, 5th ed.; Oxford University Press Inc.: New York, NY, USA, 2012. [Google Scholar]
- Nightingale, C.J.; Mitchell, S.N.; Butterfield, S.A. Validation of the Timed Up and Go Test for Assessing Balance Variables in Adults Aged 65 and Older. J. Aging Phys. Act. 2019, 27, 230–233. [Google Scholar] [CrossRef] [PubMed]
- Pumpho, A.; Chaikeeree, N.; Saengsirisuwan, V.; Boonsinsukh, R. Selection of the Better Dual-Timed Up and Go Cognitive Task to Be Used in Patients with Stroke Characterized by Subtraction Operation Difficulties. Front. Neurol. 2020, 11, 262. [Google Scholar] [CrossRef] [PubMed]
- Davis, D.H.; Creavin, S.T.; Yip, J.L.; Noel-Storr, A.H.; Brayne, C.; Cullum, S. Montreal Cognitive Assessment for the detection of dementia. Cochrane Database Syst. Rev. 2021, 7, Cd010775. [Google Scholar] [CrossRef] [PubMed]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Pan, I.M.Y.; Lau, M.S.; Mak, S.C.; Hariman, K.W.; Hon, S.K.H.; Ching, W.K.; Cheng, K.M.; Chan, C.F. Staging of Dementia Severity with the Hong Kong Version of the Montreal Cognitive Assessment (HK-MoCA)’s. Alzheimer Dis. Assoc. Disord. 2020, 34, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Völter, C.; Fricke, H.; Faour, S.; Lueg, G.; Nasreddine, Z.S.; Götze, L.; Dawes, P. Validation of the German Montreal-Cognitive-Assessment-H for hearing-impaired. Front. Aging Neurosci. 2023, 15, 1209385. [Google Scholar] [CrossRef]
- Chow, S.K.; Lai, C.K.; Wong, T.K.; Suen, L.K.; Kong, S.K.; Chan, C.K.; Wong, I.Y. Evaluation of the Morse Fall Scale: Applicability in Chinese hospital populations. Int. J. Nurs. Stud. 2007, 44, 556–565. [Google Scholar] [CrossRef]
- Levine, C.G.; Weaver, E.M. Functional comorbidity index in sleep apnea. Otolaryngol. Head Neck Surg. 2014, 150, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Groll, D.L.; To, T.; Bombardier, C.; Wright, J.G. The development of a comorbidity index with physical function as the outcome. J. Clin. Epidemiol. 2005, 58, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Plummer, P.; Eskes, G.; Wallace, S.; Giuffrida, C.; Fraas, M.; Campbell, G.; Clifton, K.L.; Skidmore, E.R. Cognitive-motor interference during functional mobility after stroke: State of the science and implications for future research. Arch. Phys. Med. Rehabil. 2013, 94, 2565–2574. [Google Scholar] [CrossRef] [PubMed]
- Kutner, M.H.; Nachtsheim, C.J.; Neter, J.; Li, W. Applied Linear Statistical Models; McGraw-Hill Irwin Boston: Boston, MA, USA, 2005; Volume 5. [Google Scholar]
- Creath, R.; Kiemel, T.; Horak, F.; Peterka, R.; Jeka, J. A unified view of quiet and perturbed stance: Simultaneous co-existing excitable modes. Neurosci. Lett. 2005, 377, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Smith, C.E.; Suzuki, Y.; Kiyono, K.; Tanahashi, T.; Sakoda, S.; Morasso, P.; Nomura, T. Universal and individual characteristics of postural sway during quiet standing in healthy young adults. Physiol. Rep. 2015, 3, e12329. [Google Scholar] [CrossRef] [PubMed]
- Mancini, M.; Horak, F.B.; Zampieri, C.; Carlson-Kuhta, P.; Nutt, J.G.; Chiari, L. Trunk accelerometry reveals postural instability in untreated Parkinson’s disease. Park. Relat. Disord. 2011, 17, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Longhurst, J.K.; Sreenivasan, K.R.; Kim, J.; Cummings, J.L.; John, S.E.; Poston, B.; Cordes, D.; Rider, J.V.; Landers, M.R. Cortical thickness is related to cognitive-motor automaticity and attention allocation in individuals with Alzheimer’s disease: A regions of interest study. Exp. Brain Res. 2023, 241, 1489–1499. [Google Scholar] [CrossRef] [PubMed]
- O’Keeffe, S.T.; Kazeem, H.; Philpott, R.M.; Playfer, J.R.; Gosney, M.; Lye, M. Gait disturbance in Alzheimer’s disease: A clinical study. Age Ageing 1996, 25, 313–316. [Google Scholar] [CrossRef] [PubMed]
- Beauchet, O.; Annweiler, C.; Dubost, V.; Allali, G.; Kressig, R.W.; Bridenbaugh, S.; Berrut, G.; Assal, F.; Herrmann, F.R. Stops walking when talking: A predictor of falls in older adults? Eur. J. Neurol. 2009, 16, 786–795. [Google Scholar] [CrossRef]
- Mirelman, A.; Shema, S.; Maidan, I.; Hausdorff, J.M. Gait. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 159, pp. 119–134. [Google Scholar] [CrossRef]
- Tangen, G.G.; Engedal, K.; Bergland, A.; Moger, T.A.; Mengshoel, A.M. Relationships between balance and cognition in patients with subjective cognitive impairment, mild cognitive impairment, and Alzheimer disease. Phys. Ther. 2014, 94, 1123–1134. [Google Scholar] [CrossRef]
- Williams, D.S.; Martin, A.E. Gait modification when decreasing double support percentage. J. Biomech. 2019, 92, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Van Ooteghem, K.; Musselman, K.E.; Mansfield, A.; Gold, D.; Marcil, M.N.; Keren, R.; Tartaglia, M.C.; Flint, A.J.; Iaboni, A. Key factors for the assessment of mobility in advanced dementia: A consensus approach. Alzheimer’s Dement. 2019, 5, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Nyman, S.R.; Ballinger, C.; Phillips, J.E.; Newton, R. Characteristics of outdoor falls among older people: A qualitative study. BMC Geriatr. 2013, 13, 125. [Google Scholar] [CrossRef] [PubMed]
- Jehu, D.A.; Pottayil, F.; Dong, Y.; Zhu, H.; Sams, R.; Young, L. Exploring the Association between Physical Activity and Cognitive Function among People Living with Dementia. J. Alzheimer’s Dis. 2024. ahead of print. [Google Scholar] [CrossRef]
- Kim, Y.J.; Choi, K.O.; Cho, S.H.; Kim, S.J. Validity of the Morse Fall Scale and the Johns Hopkins Fall Risk Assessment Tool for fall risk assessment in an acute care setting. J. Clin. Nurs. 2022, 31, 3584–3594. [Google Scholar] [CrossRef]
Variable | All Participants (n = 30) | Mild Dementia (n = 16) | Moderate-to-Severe Dementia (n = 14) |
---|---|---|---|
Age, years | 81.3 ± 7.1 (68–98) | 81.0 ± 8.5 (68–98) | 81.6 ± 5.5 (69.0–91.0) |
Female Sex, n (%) | 12 (40.0) | 8 (26.7) | 4 (13.3) |
BMI, kg/m2 | 21.5 ± 4.1 (13.5–33.4) | 23.0 ± 4.3 (17.0–33.4) | 19.9 ± 3.4 (13.5–29.3) |
FCI, total number | 3.4 ± 2.0 (1–8) | 4.5 ± 1.9 (2–8) | 2.1 ± 1.4 (1–6) |
Medications, total number | 12.3 ± 5.9 (0–28) | 12.1 ± 4.3 (7–24) | 12.6 ± 7.6 (0–28) |
Morse Fall Scale, points | 38.2 ± 22.0 (15–80) | 48.8 ± 22.5 (15–80) | 26.1 ± 14.2 (15–55) |
MoCA, points | 10.4 ± 6.0 (0–19) | 15.6 ± 2.1 (13–19) | 4.6 ± 2.6 (0–8) |
Dementia Type, n (%) | |||
Alzheimer’s Disease | 9 (30.0) | 4 (25.0) | 5 (35.7) |
Vascular Dementia | 2 (6.7) | 2 (12.5) | 0 |
Parkinson’s Disease Dementia | 1 (3.3) | 1 (6.3) | 0 |
Alcohol-Induced Dementia | 1 (3.3) | 1 (6.3) | 0 |
Unspecified, Without Behavioral Disturbance | 17 (56.7) | 8 (50.0) | 9 (64.3) |
Dementia Onset, years | 2.8 ± 2.8 (0.3 to 9.3) | 2.9 ± 2.7 (0.4 to 9.3) | 2.4 ± 3.6 (0.3 to 6.6) |
Site | |||
Nursing Home, n (%) | 15 | 14 | 1 |
Assisted Living, n (%) | 15 | 2 | 13 |
Mobility Device, n (%) | |||
Wheelchair | 1 (3.3) | 1 | |
Walker | 15 (50.0) | 12 | 3 |
Cane | 3 (10.0) | 1 | 2 |
None | 11 (36.7) | 2 | 9 |
Outcome | β | SE | Wald | p-value | OR | 95% CI Lower | Upper |
---|---|---|---|---|---|---|---|
Constant | −37.75 | 31.29 | 1.46 | 0.23 | <0.001 | --- | --- |
Age | 0.05 | 0.21 | 0.05 | 0.82 | 1.05 | 0.69 | 1.60 |
BMI | 1.05 | 0.66 | 2.54 | 0.11 | 2.89 | 0.79 | 10.39 |
DTE jerk ˆ | −0.01 | 0.01 | 3.05 | 0.08 § | 0.99 | 0.98 | 1.00 |
DTE gait speed † | −0.24 | 0.12 | 3.99 | 0.046 * | 0.79 | 0.62 | 0.996 |
DTE mid-swing elevation | −0.03 | 0.05 | 0.40 | 0.53 | 0.97 | 0.89 | 1.06 |
DTE ML ROM | −0.001 | 0.05 | <0.001 | 0.99 | 1.00 | 0.91 | 1.10 |
DTE TUG duration | 0.11 | 0.07 | 2.46 | 0.12 | 1.11 | 0.97 | 1.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jehu, D.A.; Langston, R.; Sams, R.; Young, L.; Hamrick, M.; Zhu, H.; Dong, Y. The Impact of Dual-Tasks and Disease Severity on Posture, Gait, and Functional Mobility among People Living with Dementia in Residential Care Facilities: A Pilot Study. Sensors 2024, 24, 2691. https://doi.org/10.3390/s24092691
Jehu DA, Langston R, Sams R, Young L, Hamrick M, Zhu H, Dong Y. The Impact of Dual-Tasks and Disease Severity on Posture, Gait, and Functional Mobility among People Living with Dementia in Residential Care Facilities: A Pilot Study. Sensors. 2024; 24(9):2691. https://doi.org/10.3390/s24092691
Chicago/Turabian StyleJehu, Deborah A, Ryan Langston, Richard Sams, Lufei Young, Mark Hamrick, Haidong Zhu, and Yanbin Dong. 2024. "The Impact of Dual-Tasks and Disease Severity on Posture, Gait, and Functional Mobility among People Living with Dementia in Residential Care Facilities: A Pilot Study" Sensors 24, no. 9: 2691. https://doi.org/10.3390/s24092691
APA StyleJehu, D. A., Langston, R., Sams, R., Young, L., Hamrick, M., Zhu, H., & Dong, Y. (2024). The Impact of Dual-Tasks and Disease Severity on Posture, Gait, and Functional Mobility among People Living with Dementia in Residential Care Facilities: A Pilot Study. Sensors, 24(9), 2691. https://doi.org/10.3390/s24092691