Batch Specular Plane Flatness Measurements Based on Phase Measuring Deflectometry
Abstract
:1. Introduction
2. Methods
2.1. Measurement Fundamentals
2.2. Discrete Surface Separation and Matching
2.3. Rapid Normal Vector Computation
2.3.1. Principles of Methodology
2.3.2. Accuracy Validation of the Algorithm
3. Experiment
3.1. Measurement System
3.1.1. System Construction
3.1.2. System Calibration
3.2. Accuracy and Repeatability Validation
3.2.1. Accuracy Validation
3.2.2. Repeatability Validation
3.3. Batch Surface Measurement Experiments
3.3.1. Batch Measurement and Automatic Evaluation Experiment
3.3.2. Validation of Algorithm’s Robustness
3.4. Comparison of Performance Improvement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Dai, Y.C.; Shen, X.Y.; Li, D.S. Sealing test of gas valve cover of gas meter based on line laser triangulation method. Am. J. Opt. Photonics 2020, 8, 74–80. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Lee, J.; Ghim, Y.S.; Rhee, H.G. Real-time 3D measurement of freeform surfaces by dynamic deflectometry based on diagonal spatial carrier-frequency pattern projection. Measurement 2022, 200, 111684. [Google Scholar] [CrossRef]
- Zhuang, Y.; Zheng, Y.; Lin, S.; Wang, D.; Zhang, Y.; Huang, L. Surface shape distortion online measurement method for compact laser cavities based on phase measuring deflectometry. Photonics 2022, 9, 151. [Google Scholar] [CrossRef]
- Lakota, S.; Görög, A. Flatness measurement by multi-point methods and by scanning methods. Ad Alta J. Interdiscip. Res. 2011, 1, 124–127. [Google Scholar]
- Yang, S.; Zhang, G. A review of interferometry for geometric measurement. Meas. Sci. Technol. 2018, 29, 102001. [Google Scholar] [CrossRef]
- Burke, J.; Pak, A.; Höfer, S.; Ziebarth, M.; Roschani, M.; Beyerer, J. Deflectometry for specular surfaces: An overview. Adv. Opt. Technol. 2023, 12, 1237687. [Google Scholar] [CrossRef]
- Bothe, T.; Li, W.; von Kopylow, C.; Juptner, W.P. High-resolution 3D shape measurement on specular surfaces by fringe reflection. Opt. Metrol. Prod. Eng. 2004, 5457, 411–422. [Google Scholar]
- Knauer, M.C.; Kaminski, J.; Hausler, G. Phase measuring deflectometry: A new approach to measure specular free-form surfaces. Opt. Metrol. Prod. Eng. 2004, 5457, 366–376. [Google Scholar]
- Xu, Y.; Gao, F.; Zhang, Z.; Jiang, X. A holistic calibration method with iterative distortion compensation for stereo deflectometry. Opt. Lasers Eng. 2018, 106, 111–118. [Google Scholar] [CrossRef]
- Han, H.; Wu, S.; Song, Z.; Gu, F.; Zhao, J. 3D reconstruction of the specular surface using an iterative stereoscopic deflectometry method. Opt. Express 2021, 29, 12867–12879. [Google Scholar] [CrossRef]
- Wang, R.; Li, D.; Zhang, X.; Zheng, W.; Yu, L.; Ge, R. Marker-free stitching deflectometry for three-dimensional measurement of the specular surface. Opt. Express 2021, 29, 41851–41864. [Google Scholar] [CrossRef]
- Zhang, X.; Li, D.; Wang, R. Screen-monitored stitching deflectometry based on binocular stereo vision. Measurement 2023, 207, 112440. [Google Scholar] [CrossRef]
- Wang, R.; Li, D.; Zhang, X. Systematic error control for deflectometry with iterative reconstruction. Measurement 2021, 168, 108393. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, S.; Zhang, Z.; Gao, N.; Gao, F.; Jiang, X. Full-field 3D shape measurement of discontinuous specular objects by direct phase measuring deflectometry. Sci. Rep. 2017, 7, 10293. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, Y.; Zhang, Z.; Gao, F.; Jiang, X. 3D measurement of structured specular surfaces using stereo direct phase measurement deflectometry. Machines 2021, 9, 170. [Google Scholar] [CrossRef]
- Chang, C.; Zhang, Z.; Gao, N.; Meng, Z. Improved infrared phase measuring deflectometry method for the measurement of discontinuous specular objects. Opt. Lasers Eng. 2020, 134, 106194. [Google Scholar] [CrossRef]
- Gao, F.; Xu, Y.; Jiang, X. Near optical coaxial phase measuring deflectometry for measuring structured specular surfaces. Opt. Express 2022, 30, 17554–17566. [Google Scholar] [CrossRef]
- Gao, F.; Xu, Y.; Jiang, X. Stereo deflectometry based automatic segmentation technique for measuring structured specular surfaces. Opt. Lasers Eng. 2022, 158, 107195. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Gao, F.; Xu, Y.; Jiang, X. Enhancement of measurement accuracy of discontinuous specular objects with stereo vision deflectometer. Measurement 2022, 188, 110570. [Google Scholar] [CrossRef]
- Zuo, C.; Huang, L.; Zhang, M.; Chen, Q.; Asundi, A. Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review. Opt. Lasers Eng. 2016, 85, 84–103. [Google Scholar] [CrossRef]
- Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [Google Scholar] [CrossRef]
- Xiao, Y.L.; Su, X.; Chen, W. Flexible geometrical calibration for fringe-reflection 3D measurement. Opt. Lett. 2012, 37, 620–622. [Google Scholar] [CrossRef] [PubMed]
Hardware | Parameters |
---|---|
Screen | Pixel size (0.16 mm) |
Camera | Resolution rate (2048 × 1536) |
Lens | Focal length (25 mm) |
Interferometer | Our Method | |
---|---|---|
PV (μm) | 0.2339 | 0.2726 |
RMS (μm) | 0.0398 | 0.0510 |
Number | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
PV (μm) | 0.1843 | 0.1552 | 0.1524 | 0.2072 | 0.1431 | 0.1710 |
RMS (μm) | 0.0315 | 0.0225 | 0.0237 | 0.0354 | 0.0259 | 0.0253 |
Number | 7 | 8 | 9 | 10 | Avg | SD |
PV (μm) | 0.2247 | 0.2173 | 0.2198 | 0.1522 | 0.1824 | 0.0314 |
RMS (μm) | 0.0362 | 0.0296 | 0.0325 | 0.0264 | 0.0289 | 0.0049 |
Match-Based Method [8] | Our Method | Interferometer | |
---|---|---|---|
PV (μm) | 1.3494 | 1.3537 | 1.3512 |
RMS (μm) | 0.3645 | 0.3534 | 0.3592 |
Time (s) | 11.93 | 2.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Wang, D.; Liu, L.; Zhang, X. Batch Specular Plane Flatness Measurements Based on Phase Measuring Deflectometry. Sensors 2024, 24, 2693. https://doi.org/10.3390/s24092693
Li Z, Wang D, Liu L, Zhang X. Batch Specular Plane Flatness Measurements Based on Phase Measuring Deflectometry. Sensors. 2024; 24(9):2693. https://doi.org/10.3390/s24092693
Chicago/Turabian StyleLi, Zhuotong, Dongxue Wang, Lei Liu, and Xiaodong Zhang. 2024. "Batch Specular Plane Flatness Measurements Based on Phase Measuring Deflectometry" Sensors 24, no. 9: 2693. https://doi.org/10.3390/s24092693
APA StyleLi, Z., Wang, D., Liu, L., & Zhang, X. (2024). Batch Specular Plane Flatness Measurements Based on Phase Measuring Deflectometry. Sensors, 24(9), 2693. https://doi.org/10.3390/s24092693