Diagnosis of Autism Spectrum Disorder (ASD) by Dynamic Functional Connectivity Using GNN-LSTM
Abstract
:1. Introduction
- Aiming at the problem that SFC cannot effectively capture the change of FC over time, in this paper, we use the sliding window method to compute the DFC. This method not only can compute the time series into multiple FCs but also provides a rich and comprehensive database for the subsequent feature extraction and analysis.
- To extract representative node features from dynamic brain networks, an innovative pooling operation, dynamic graph pooling (DG-Pool), derives the final node feature representations by synthesizing the graphical representations of each time window, effectively preserving the key information of the time scale, and providing a powerful feature support for the ASD detection provides strong feature support.
- To address the problem of DFC dependence on time scales, we introduce a jump connection between GNN-LSTM units. This connection mechanism allows the model to retain higher-order time-scale information, thus realizing the accurate extraction of DFC time-space features. This improvement not only enhances the expressive capability of the model but also strengthens its ability to handle complex dynamic data.
- Experimental validation on the ABIDE dataset demonstrates that the GNN-LSTM model exhibits high efficiency in detecting ASD. The results show that the model excels in processing DFC, offering new insights for ASD diagnosis and treatment techniques and paving the way for in-depth research on the pathological causes of ASD. These findings are crucial for enhancing the accuracy of ASD diagnosis, alleviating the burden on the healthcare system, and providing timely and effective interventions for children with ASD.
2. Materials and Methods
2.1. Data Pre-Processing
2.2. Methods
- The fully connected operator in LSTM ignores spatial correlation.
- Fixed jump lengths within LSTMs are constrained by the inability to utilize variable length dependencies.
3. Experiments and Results
3.1. Experimental Setup
3.2. Statistical Metrics
3.3. Comparison with State-of-the-Art (SOTA) Models
3.4. Ablation Study
3.5. Comparison of Different Pooling Methods
3.6. Feature Visualization
3.7. Cluster Analysis
3.8. Hyperparameter Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, M.; Lian, C.; Yao, D.; Zhang, D.; Liu, M.; Shen, D. Spatial-temporal dependency modeling and network hub detection for functional MRI analysis via convolutional-recurrent network. IEEE Trans. Biomed. Eng. 2019, 67, 2241–2252. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Chen, Z.; Rekik, I.; Lee, S.W.; Shen, D. Diagnosis of autism spectrum disorder using central-moment features from low-and high-order dynamic resting-state functional connectivity networks. Front. Neurosci. 2020, 14, 258. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Sheng, Y.; Lan, W.; Guo, R.; Wang, Y.; Wang, J. Improved ASD classification using dynamic functional connectivity and multi-task feature selection. Pattern Recognit. Lett. 2020, 138, 82–87. [Google Scholar] [CrossRef]
- Yan, W.; Zhang, H.; Sui, J.; Shen, D. Deep chronnectome learning via full bidirectional long short-term memory networks for MCI diagnosis. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st International Conference, Granada, Spain, 16–20 September 2018; Proceedings, Part III 11. Springer: Berlin/Heidelberg, Germany, 2018; pp. 249–257. [Google Scholar]
- Chen, L.; Wang, S.; Wei, Z.; Zhang, Y.; Luo, M.; Liang, Y. A Self-Attention Based DNN Model to Classify Dynamic Functional Connectivity for Autism Spectrum Disorder Diagnosis. In Proceedings of the 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Istanbul, Turkey, 5–8 December 2023; IEEE: New York, NY, USA, 2023; pp. 1856–1859. [Google Scholar]
- Hu, Z.; Gao, L.; Tong, Y.; Lu, X.; Li, R.; Xiao, L.; Li, Z. Multi-scale convolutional neural networks for brain disease diagnosis. In Proceedings of the 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Istanbul, Turkey, 5–8 December 2023; IEEE: New York, NY, USA, 2023; pp. 3775–3781. [Google Scholar]
- Xing, X.; Li, Q.; Yuan, M.; Wei, H.; Xue, Z.; Wang, T.; Shi, F.; Shen, D. DS-GCNs: Connectome classification using dynamic spectral graph convolution networks with assistant task training. Cereb. Cortex 2021, 31, 1259–1269. [Google Scholar] [CrossRef] [PubMed]
- Gadgil, S.; Zhao, Q.; Pfefferbaum, A.; Sullivan, E.V.; Adeli, E.; Pohl, K.M. Spatio-temporal graph convolution for resting-state fMRI analysis. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, 4–8 October 2020; Proceedings, Part VII 23. Springer: Berlin/Heidelberg, Germany, 2020; pp. 528–538. [Google Scholar]
- Deng, X.; Zhang, L.; Liu, R.; Chen, Z.; Xiao, B. ST-ASDNET: A BLSTM-FCN-Transformer basedASD Classification Model for Time-series fMRI. Res. Sq. 2023, preprint. [Google Scholar] [CrossRef]
- Deng, X.; Zhang, J.; Liu, R.; Liu, K. Classifying ASD based on time-series fMRI using spatial–temporal transformer. Comput. Biol. Med. 2022, 151, 106320. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, T.; Campbell, A.; Romero-Garcia, R.; Passamonti, L.; Bethlehem, R.A.; Lio, P.; Toschi, N. A deep graph neural network architecture for modelling spatio-temporal dynamics in resting-state functional MRI data. Med. Image Anal. 2022, 79, 102471. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Huang, J.; Liu, M.; Zhang, D. Modeling dynamic characteristics of brain functional connectivity networks using resting-state functional MRI. Med. Image Anal. 2021, 71, 102063. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Jie, B.; Dong, P.; Ding, X.; Bian, W.; Liu, M. Convolutional recurrent neural network for dynamic functional MRI analysis and brain disease identification. Front. Neurosci. 2022, 16, 933660. [Google Scholar] [CrossRef] [PubMed]
- Cangea, C.; Veličković, P.; Jovanović, N.; Kipf, T.; Liò, P. Towards sparse hierarchical graph classifiers. arXiv 2018, arXiv:1811.01287. [Google Scholar]
- Gao, H.; Ji, S. Graph u-nets. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 2083–2092. [Google Scholar]
- Jung, M.; Tu, Y.; Park, J.; Jorgenson, K.; Lang, C.; Song, W.; Kong, J. Surface-based shared and distinct resting functional connectivity in attention-deficit hyperactivity disorder and autism spectrum disorder. Br. J. Psychiatry 2019, 214, 339–344. [Google Scholar] [CrossRef]
- Zheng, W.; Eilam-Stock, T.; Wu, T.; Spagna, A.; Chen, C.; Hu, B.; Fan, J. Multi-feature based network revealing the structural abnormalities in autism spectrum disorder. IEEE Trans. Affect. Comput. 2019, 12, 732–742. [Google Scholar] [CrossRef]
- Kang, L.; Gong, Z.; Huang, J.; Xu, J. Autism spectrum disorder recognition based on machine learning with ROI time-series. NeuroImage Clinical 2023. [Google Scholar]
- Yang, J.; Hu, M.; Hu, Y.; Zhang, Z.; Zhong, J. Diagnosis of Autism Spectrum Disorder (ASD) Using Recursive Feature Elimination–Graph Neural Network (RFE–GNN) and Phenotypic Feature Extractor (PFE). Sensors 2023, 23, 9647. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, X.; Chen, Y.; Yang, X. IFC-GNN: Combining interactions of functional connectivity with multimodal graph neural networks for ASD brain disorder analysis. Alex. Eng. J. 2024, 98, 44–55. [Google Scholar] [CrossRef]
- Ji, J.; Ye, C.; Yang, C. Convolutional bidirectional GRU for dynamic functional connectivity classification in brain diseases diagnosis. Knowl.-Based Syst. 2024, 287, 111450. [Google Scholar] [CrossRef]
- Liu, R.; Huang, Z.A.; Hu, Y.; Zhu, Z.; Wong, K.C.; Tan, K.C. Spatial–temporal co-attention learning for diagnosis of mental disorders from resting-state fMRI data. IEEE Trans. Neural Netw. Learn. Syst. 2023, 35, 10591–10605. [Google Scholar] [CrossRef]
Category | Specifications |
---|---|
System | Ubuntu 20.04.6 LTS (Linux 5.4.0-144-generic) |
CPU | 16 vCPU AMD EPYC 9654 96-Core Processor |
Memory | 60 GB |
GPU | NVIDIA GeForce RTX 4090 (24 GB) |
Parameter | Value |
---|---|
Epoch | 60 |
Batch size | 16 |
Window size | 40 |
Window step size | 10 |
Skip length p | 2 |
Learning rate | 0.001 |
Weight decay | 0.05 |
Scheduler step size | 20 |
Scheduler shrinking rate | 0.4 |
Optimizer | Adam |
Methods | FC Calculation | FC Type | ACC | SEN |
---|---|---|---|---|
Jung 2019 [16] | Pearson correlation coefficient | SFC | 0.763 | 0.792 |
Liu 2020 [3] | Pearson correlation coefficient | SFC | 0.768 | 0.725 |
Zheng 2019 [17] | Clustering coefficient | SFC | 0.7863 | 0.8 |
Zhao 2020 [2] | Central moment value | DFC | 0.81 | 0.82 |
Kang 2023 [18] | Pearson correlation coefficient | DFC | 0.811 | NA |
Yang 2023 [19] | Pearson correlation coefficient | SFC | 0.7874 | 0.7429 |
Wang 2024 [20] | Generate interaction of FC | SFC | 0.8066 | NA |
GNN-LSTM | Ledoit–Wolf covariance | DFC | 0.804 | 0.824 |
Methods | FC Calculation | FC Type | ACC | SEN |
---|---|---|---|---|
Deng 2023 [9] | Pearson correlation coefficient | DFC | 0.7026 | NA |
Ji 2024 [21] | Pearson correlation coefficient | DFC | 0.7181 | 0.7392 |
Liu 2023 [22] | Pearson correlation coefficient | DFC | 0.72 | NA |
Hu 2023 [6] | Pearson correlation coefficient | DFC | 0.7262 | NA |
Yang 2023 [19] | Pearson correlation coefficient | DFC | 0.8036 | 0.7624 |
GNN-LSTM | Ledoit–Wolf covariance | DFC | 0.7963 | 0.7848 |
Methods | ACC | SEN | PRE | F1_Score |
---|---|---|---|---|
GCN | 0.6957 | 0.6522 | 0.7143 | 0.6818 |
LSTM | 0.674 | 0.4783 | 0.7857 | 0.5946 |
GNN-LSTM | 0.7391 | 0.5789 | 0.7333 | 0.647 |
GNN-LSTM (skip) | 0.761 | 0.6667 | 0.7778 | 0.7179 |
GNN-LSTM (pool) | 0.7826 | 0.7647 | 0.6842 | 0.7222 |
GNN-LSTM (skip, pool) | 0.8044 | 0.6111 | 0.8462 | 0.7097 |
Methods | ACC | SEN | PRE | F1_Score |
---|---|---|---|---|
GCN | 0.6774 | 0.6468 | 0.7026 | 0.6735 |
LSTM | 0.674 | 0.6808 | 0.7056 | 0.693 |
GNN-LSTM | 0.7278 | 0.6957 | 0.7333 | 0.714 |
GNN-LSTM (skip) | 0.7541 | 0.6911 | 0.7458 | 0.7174 |
GNN-LSTM (pool) | 0.7855 | 0.7589 | 0.6998 | 0.7282 |
GNN-LSTM (skip, pool) | 0.7963 | 0.7848 | 0.7762 | 0.7805 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Chen, J.; Hu, M.; Hu, Y.; Zhang, Z.; Xiao, L. Diagnosis of Autism Spectrum Disorder (ASD) by Dynamic Functional Connectivity Using GNN-LSTM. Sensors 2025, 25, 156. https://doi.org/10.3390/s25010156
Tang J, Chen J, Hu M, Hu Y, Zhang Z, Xiao L. Diagnosis of Autism Spectrum Disorder (ASD) by Dynamic Functional Connectivity Using GNN-LSTM. Sensors. 2025; 25(1):156. https://doi.org/10.3390/s25010156
Chicago/Turabian StyleTang, Jun, Jie Chen, Miaojun Hu, Yao Hu, Zixi Zhang, and Liuming Xiao. 2025. "Diagnosis of Autism Spectrum Disorder (ASD) by Dynamic Functional Connectivity Using GNN-LSTM" Sensors 25, no. 1: 156. https://doi.org/10.3390/s25010156
APA StyleTang, J., Chen, J., Hu, M., Hu, Y., Zhang, Z., & Xiao, L. (2025). Diagnosis of Autism Spectrum Disorder (ASD) by Dynamic Functional Connectivity Using GNN-LSTM. Sensors, 25(1), 156. https://doi.org/10.3390/s25010156