Three-Dimensional Convolutional Neural Network for Ultrasound Surface Echo Detection
Abstract
1. Introduction
2. Methods and Materials
2.1. Data Preparation
2.1.1. Experiment Setup
2.1.2. Data Acquisition and Preprocessing
2.1.3. Ground Truth
2.2. Base CNN Architecture Selection
2.3. Parameter Optimization
2.3.1. Hyperparameter Definition
- Number of Convolutional Blocks: This impacts the depth of feature extraction. It was tuned between 2, 3, 4, or 5 convolutional blocks to ensure sufficient depth for feature extraction without overfitting. Each block is composed of 5 layers: 3D convolution, spatial dropout, batch normalization, 3D convolution, and another batch normalization layer.
- Convolutional Filter Size (Kernel Size): This determines the receptive field of the convolutional layers and affects how the network captures spatial features. It was adjusted to capture the most relevant features along the time axis with values between [3, 3, 6] and [3, 3, 21].
- Number of Filters: The number of filters in each convolutional layer influences the capacity of the network to learn diverse features. It was optimized with values typically ranging from 8 to 16 filters per layer with the aim of not oversizing the network.
- Pool Size: This influences the reduction of spatial dimensions over the CNN, and it is optimized to find the correct dimension reduction to be applied in MaxPooling layers. The x- and y-axes were tuned with values 1 or 2, and the temporal axis was tuned with values 2, 4, or 8.
- Loss Function: The loss function plays a significant role in guiding the network’s learning process towards minimizing prediction errors. We experimented with three different loss functions to find the most effective one for our specific application: binary cross-entropy [34], Tversky [35], and Dice [36] losses, which are typically used in segmentation problems [37].
- Learning Rate: This was chosen to ensure stable and efficient training, balancing the speed of convergence with the stability of the learning process.
2.3.2. Hyperparameter Search
2.4. CNN Final Selection
2.4.1. Initial Preselection
2.4.2. Retraining and Stability Analysis
- Outliers where the surface echo is not detected because the network threshold (0.5) is never crossed for that particular image line (type 1). In the case of the standard threshold crossing method this type of outlier corresponds to the signal never crossing the predefined threshold level.
- Outliers where the index error exceeds a predefined number (max_idx_error) of samples (type 2).
2.4.3. Final Model Decision
2.5. Training
2.6. Test
3. Results and Discussion
3.1. Parameter Optimization Results
3.2. CNN Selection Results
3.3. Final Decision
3.4. Test Results
3.5. TFM Autofocusing with the Detected Surface Echoes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Drinkwater, B.W.; Wilcox, P.D. Ultrasonic arrays for non-destructive evaluation: A review. NDT E Int. 2006, 39, 525–541. [Google Scholar] [CrossRef]
- Holmes, C.; Drinkwater, B.W.; Wilcox, P.D. Post-processing of the full matrix of ultrasonic transmit-receive array data for non-destructive evaluation. NDT E Int. 2005, 38, 701–711. [Google Scholar] [CrossRef]
- Montaldo, G.; Tanter, M.; Berco, J.; Benech, N.; Fink, M. Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2009, 56, 489–506. [Google Scholar] [CrossRef]
- Le Jeune, L.; Robert, S.; Prada, C. Plane wave imaging for ultrasonic inspection of irregular structures with high frame rates. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2016; Volume 1706, p. 020010. [Google Scholar]
- Chang, Z.; Xu, X.; Wu, S.; Wu, E.; Yang, K.; Chen, J.; Jin, H. Ultrasonic dynamic plane wave imaging for high-speed railway inspection. Mech. Syst. Signal Process. 2024, 220, 111672. [Google Scholar] [CrossRef]
- Le Jeune, L.; Robert, S.; Dumas, P.; Membre, A.; Prada, C. Adaptive ultrasonic imaging with the total focusing method for inspection of complex components immersed in water. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2015; Volume 1650, pp. 1037–1046. [Google Scholar]
- Luo, Z.; Liu, Z.; Li, F.; Jin, S. Defects Imaging in Corner Part with Surface Adaptive Ultrasonic and Focusing in Receiving (FiR) Strategy. J. Nondestruct. Eval. 2024, 43, 49. [Google Scholar] [CrossRef]
- Camacho, J.; Cruza, F.J.; Brizuela, J.; Fritsch, C. Automatic dynamic depth focusing for NDT. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2014, 61, 673–684. [Google Scholar] [CrossRef]
- Hunter, A.J.; Drinkwater, B.W.; Wilcox, P.D. Autofocusing ultrasonic imagery for non-destructive testing and evaluation of specimens with complicated geometries. NDT E Int. 2010, 43, 78–85. [Google Scholar] [CrossRef]
- Cosarinsky, G.; Cruza, J.F.; Muñoz, M.; Camacho, J. Optimized auto-focusing method for 3D ultrasound imaging in NDT. NDT E Int. 2023, 134, 102779. [Google Scholar] [CrossRef]
- McKee, J.G.; Bevan, R.L.T.; Wilcox, P.D.; Malkin, R.E. Volumetric imaging through a doubly-curved surface using a 2D phased array. NDT E Int. 2020, 113, 102260. [Google Scholar] [CrossRef]
- Robert, S.; Calmon, P.; Calvo, M.; Le Jeune, L.; Iakovleva, E. Surface estimation methods with phased-arrays for adaptive ultrasonic imaging in complex components. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2015; Volume 1650, pp. 1657–1666. [Google Scholar]
- Sutcliffe, M.; Weston, M.; Charlton, P.; Donne, K.; Wright, B.; Cooper, I. Full matrix capture with time-efficient auto-focusing of unknown geometry through dual-layered media. Insight Non-Destr. Test. Cond. Monit. 2013, 55, 297–301. [Google Scholar] [CrossRef]
- Matuda, M.Y.; Buiochi, F.; Adamowski, J.C. Experimental analysis of surface detection methods for two-medium imaging with a linear ultrasonic array. Ultrasonics 2019, 94, 50–59. [Google Scholar] [CrossRef]
- Chen, Q.; Xie, Y.; Cao, H.; He, Z.; Wang, D.; Guo, S. Ultrasonic inspection of curved structures with a hemispherical-omnidirectional ultrasonic probe via linear scan SAFT imaging. NDT E Int. 2022, 129, 102650. [Google Scholar] [CrossRef]
- Cosarinsky, G.; Cruza, J.F.; Muñoz, M.; Camacho, J. Automatic estimation of surface and probe location for 3D imaging with bidimensional arrays. NDT E Int. 2024, 141, 102990. [Google Scholar] [CrossRef]
- Parrilla, M.; Anaya, J.J.; Fritsch, C. Digital Signal Processing Techniques for High Accuracy Ultrasonic Range Measurements. IEEE Trans. Instrum. Meas. 1991, 40, 759–763. [Google Scholar] [CrossRef]
- Bai, F.; Gagar, D.; Foote, P.; Zhao, Y. Comparison of alternatives to amplitude thresholding for onset detection of acoustic emission signals. Mech. Syst. Signal Process. 2017, 84, 717–730. [Google Scholar] [CrossRef]
- Pan, S.; Qin, Z.; Lan, H.; Badal, J. Automatic first-arrival picking method based on an image connectivity algorithm and multiple time windows. Comput. Geosci. 2019, 123, 95–102. [Google Scholar] [CrossRef]
- Avanesians, P.; Momayez, M. Wave separation: Application for arrival time detection in ultrasonic signals. Ultrasonics 2015, 55, 15–25. [Google Scholar] [CrossRef]
- Roux, F.; Armstrong, B.C.; Carreiras, M. Chronset: An automated tool for detecting speech onset. Behav. Res. Methods 2017, 49, 1864–1881. [Google Scholar] [CrossRef]
- Qu, X.; Yan, G.; Zheng, D.; Fan, S.; Rao, Q.; Jiang, J. A Deep Learning-Based Automatic First-Arrival Picking Method for Ultrasound Sound-Speed Tomography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2021, 68, 2675–2686. [Google Scholar] [CrossRef]
- Cantero-Chinchilla, S.; Wilcox, P.D.; Croxford, A.J. Deep learning in automated ultrasonic NDE -- developments, axioms and opportunities. NDT E Int. 2021, 131, 102703. [Google Scholar] [CrossRef]
- Hervé-Côte, H.; Dupont-Marillia, F.; Bélanger, P. Automatic flaw detection in sectoral scans using machine learning. Ultrasonics 2024, 138, 107234. [Google Scholar] [CrossRef]
- Tavares, A.; Di Lorenzo, E.; Cornelis, B.; Peeters, B.; Desmet, W.; Gryllias, K. Machine Learning approaches to damage detection in composite structures combining experimental and simulation domains. Mech. Syst. Signal Process. 2024, 215, 111412. [Google Scholar] [CrossRef]
- Miorelli, R.; Robert, S.; Calmon, P.; Le Berre, S. Use of deep learning and data augmentation by physics-based modelling for crack characterisation from multimodal ultrasonic TFM images. Nondestruct. Test. Eval. 2024, 1–23. [Google Scholar] [CrossRef]
- Tu, J.; Wang, H.; Song, Y.; Wu, Q.; Zhang, X.; Song, X. The characterisation of surface-breaking crack using ultrasonic total focusing method imaging based on COA-VMD. Nondestruct. Test. Eval. 2025, 1–23. [Google Scholar] [CrossRef]
- Li, H.; Yang, Z.; Yan, W. An improved AIC onset-time picking method based on regression convolutional neural network. Mech. Syst. Signal Process. 2022, 171, 108867. [Google Scholar] [CrossRef]
- Guo, X. First-Arrival Picking for Microseismic Monitoring Based on Deep Learning. Int. J. Geophys. 2021, 2021, 5548346. [Google Scholar] [CrossRef]
- Yuan, P.; Wang, S.; Hu, W.; Wu, X.; Chen, J.; Van Nguyen, H. A robust first-arrival picking workflow using convolutional and recurrent neural networks. Geophysics 2020, 85, U109–U119. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention 1—MICCAI 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Milletari, F.; Navab, N.; Ahmadi, S.-A. V-net: Fully convolutional neural networks for volumetric medical image segmentation. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; pp. 565–571. [Google Scholar]
- Li, L.; Jamieson, K.; DeSalvo, G.; Rostamizadeh, A.; Talwalkar, A. Hyperband: A novel bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res. 2018, 18, 1–52. [Google Scholar]
- Ma, Y.; Qing, L.; Qian, Z. Automated image segmentation using improved PCNN model based on cross-entropy. In Proceedings of the 2004 International Symposium on Intelligent Multimedia, Video and Speech Processing, Hong Kong, China, 20–22 October 2004; pp. 743–746. [Google Scholar]
- Salehi, S.S.M.; Erdogmus, D.; Gholipour, A. Tversky loss function for image segmentation using 3D fully convolutional deep networks. In Proceedings of the International Workshop on Machine Learning in Medical Imaging, Quebec City, QC, Canada, 10 September 2017; pp. 379–387. [Google Scholar]
- Sudre, C.H.; Li, W.; Vercauteren, T.; Ourselin, S.; Cardoso, M.J. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In Proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Québec City, QC, Canada, 14 September 2017; pp. 240–248. [Google Scholar]
- Jadon, S. A survey of loss functions for semantic segmentation. In Proceedings of the 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Vina del Mar, Chile, 27–29 October 2020; pp. 1–7. [Google Scholar]
- Lahoud, J.; Cao, J.; Khan, F.S.; Cholakkal, H.; Anwer, R.M.; Khan, S.; Yang, M.H. 3D vision with transformers: A survey. arXiv 2022, arXiv:2208.04309. [Google Scholar]
Diameter | Use | Curvature Type | |
---|---|---|---|
Flat Plate | - | Train–Validation | Flat |
Sphere | 19 mm | Train–Validation | Convex |
CYL1 | 12 mm | Test | Convex |
CYL2 | 25 mm | Train–Validation | Concave |
CYL3 | 35 mm | Test | Convex |
CYL4 | 40 mm | Test | Concave |
Candidate | Model_1 | Model_2 | Model_3 | Model_4 | Model_5 |
---|---|---|---|---|---|
Pool size | [1, 1, 8] | [2, 2, 8] | [1, 1, 8] | [2, 2, 8] | [1, 1, 8] |
Number of convolutional blocks | 2 | 2 | 2 | 2 | 3 |
Kernel size | [3, 3, 18] | [3, 3, 18] | [3, 3, 12] | [3, 3, 18] | [3, 3, 6] |
Number of filters | 16 | 16 | 16 | 16 | 16 |
Learning rate | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
Loss function | Binary cross-entropy | Binary cross-entropy | Binary cross-entropy | Tversky | Binary cross-entropy |
Candidate | Centroid Idx Error | Centroid Outliers | Avg. Distance |
---|---|---|---|
Model_1 | 4.28 | 0.11 | 0.25 |
Model_2 | 4.31 | 0.15 | 0.59 |
Model_3 | 4.06 | 0.06 | 0.09 |
Model_4 | 4.11 | 0.07 | 0.36 |
Model_5 | 4.31 | 0.13 | 0.30 |
Metric | Mean |
---|---|
Dice | 0.993 |
IOU | 0.988 |
Recall | 0.997 |
Precision | 0.991 |
Accuracy | 0.996 |
Solution | Error Std | 95% Error Interval | Outliers (%) |
---|---|---|---|
Thr 200 | 327 | [−849, 10] | 70 |
Thr 150 | 332 | [−847, 10] | 61 |
Thr 100 | 326 | [−840, 9] | 52 |
Thr 50 | 319 | [−829, 8] | 57 |
DeepEcho3D | 16 | [−9, 5] | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz, M.; Rubio, A.; Larrea, M.; Cruza, J.F.; Camacho, J.; Cosarinsky, G. Three-Dimensional Convolutional Neural Network for Ultrasound Surface Echo Detection. Sensors 2025, 25, 5033. https://doi.org/10.3390/s25165033
Muñoz M, Rubio A, Larrea M, Cruza JF, Camacho J, Cosarinsky G. Three-Dimensional Convolutional Neural Network for Ultrasound Surface Echo Detection. Sensors. 2025; 25(16):5033. https://doi.org/10.3390/s25165033
Chicago/Turabian StyleMuñoz, Mario, Adrián Rubio, Marcelo Larrea, Jorge F. Cruza, Jorge Camacho, and Guillermo Cosarinsky. 2025. "Three-Dimensional Convolutional Neural Network for Ultrasound Surface Echo Detection" Sensors 25, no. 16: 5033. https://doi.org/10.3390/s25165033
APA StyleMuñoz, M., Rubio, A., Larrea, M., Cruza, J. F., Camacho, J., & Cosarinsky, G. (2025). Three-Dimensional Convolutional Neural Network for Ultrasound Surface Echo Detection. Sensors, 25(16), 5033. https://doi.org/10.3390/s25165033