Accurate and timely land monitoring is crucial for addressing global environmental, economic, and societal challenges, including climate change, sustainable development, and disaster mitigation. While single-source remote sensing data offers significant capabilities, inherent limitations such as cloud cover interference (optical), speckle noise (radar), or
[...] Read more.
Accurate and timely land monitoring is crucial for addressing global environmental, economic, and societal challenges, including climate change, sustainable development, and disaster mitigation. While single-source remote sensing data offers significant capabilities, inherent limitations such as cloud cover interference (optical), speckle noise (radar), or limited spectral information (LiDAR) often hinder comprehensive and robust characterization of land surfaces. Recent advancements in synergistic harmonization technology for land monitoring, along with enhanced signal processing techniques and the integration of machine learning algorithms, have significantly broadened the scope and depth of geosciences. Therefore, it is essential to summarize the comprehensive applications of synergistic harmonization technology for geosciences, with a particular focus on recent advancements. Most of the existing review papers focus on the application of a single technology in a specific area, highlighting the need for a comprehensive review that integrates synergistic harmonization technology. This review provides a comprehensive review of advancements in land monitoring achieved through the synergistic harmonization of optical, radar, and LiDAR satellite technologies. It details the unique strengths and weaknesses of each sensor type, highlighting how their integration overcomes individual limitations by leveraging complementary information. This review analyzes current data harmonization and preprocessing techniques, various data fusion levels, and the transformative role of machine learning and deep learning algorithms, including emerging foundation models. Key applications across diverse domains such as land cover/land use mapping, change detection, forest monitoring, urban monitoring, agricultural monitoring, and natural hazard assessment are discussed, demonstrating enhanced accuracy and scope. Finally, this review identifies persistent challenges such as technical complexities in data integration, issues with data availability and accessibility, validation hurdles, and the need for standardization. It proposes future research directions focusing on advanced AI, novel fusion techniques, improved data infrastructure, integrated “space–air–ground” systems, and interdisciplinary collaboration to realize the full potential of multi-sensor satellite data for robust and timely land surface monitoring. Supported by deep learning, this synergy will improve our ability to monitor land surface conditions more accurately and reliably.
Full article