Machine Learning Prediction of Mean Arterial Pressure from the Photoplethysmography Waveform During Hemorrhagic Shock and Fluid Resuscitation
Abstract
Highlights
- Different combinations of feature extraction methodologies and artificial intelligence models successfully predicted mean arterial pressure throughout a clinically relevant hemorrhage and resuscitation animal study.
- Manually extracted features fed into a long short-term memory network predicted mean arterial pressure with the highest accuracy in this study.
- Manual feature extraction using clinically relevant waveform features, combined with deep learning architectures, can accurately predict mean arterial pressure using non-invasive sensors.
- This technology, with further maturation, has the potential to significantly improve pre-hospital trauma management, improving triage decisions and guiding hemorrhage and resuscitation.
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Study
2.2. Real-Time Data Processing and MAP Prediction
2.3. Machine and Deep Learning Model Methodology
2.3.1. Overview of Machine Learning and Deep Learning
2.3.2. Data Processing
Automated Feature Extraction (AutoFE)
Manual Feature Extraction (MFE)
2.3.3. Model Development
AutoFE CNN-LSTM Model
MFE XGBoost Model
MFE LSTM Model
2.3.4. Performance Metrics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PPG | Photoplethysmography |
ML | Machine Learning |
MAP | Mean Arterial Pressure |
AI | Artificial Intelligence |
MIMIC | Multiparameter Intelligent Monitoring in Intensive Care |
CNN | Convolutional Neural Network |
LSTM | Long Short-Term Memory |
DL | Deep Learning |
RT | Real-Time |
AutoFE | Automated Feature Extraction |
IQR | Interquartile Range |
MFE | Manual Feature Extraction |
LOSO | Leave One Subject Out |
R2 | Coefficient of Determination |
RMSE | Root Mean Squared Error |
PE | Performance Error |
APE | Absolute Performance Error |
MDPE | Median Performance Error |
MDAPE | Median Absolute Performance Error |
NIH | National Institute of Health |
IACUC | Institutional Animal Care and Use Committee |
CRADA | Cooperative Research and Development Agreement |
References
- Elliott, M. The global elements of vital signs’ assessment: A guide for clinical practice. Br. J. Nurs. 2021, 30, 956–962. [Google Scholar] [CrossRef]
- Wolf, L.; Ceci, K.; McCallum, D.; Brecher, D. Emergency Severity Index Handbook, 5th ed.; Emergency Nurses Association: Schaumburg, IL, USA, 2023; Volume 36. [Google Scholar]
- Brekke, I.J.; Puntervoll, L.H.; Pedersen, P.B.; Kellett, J.; Brabrand, M. The value of vital sign trends in predicting and monitoring clinical deterioration: A systematic review. PLoS ONE 2019, 14, e0210875. [Google Scholar] [CrossRef]
- Lehman, L.W.H.; Saeed, M.; Talmor, D.; Mark, R.; Malhotra, A. Methods of Blood Pressure Measurement in the ICU*. Crit. Care Med. 2013, 41, 34–40. [Google Scholar] [CrossRef]
- Tuggle, D. Hypotension and shock: The truth about blood pressure. Nursing2024 2010, 40, 1–5. [Google Scholar] [CrossRef]
- Romagnoli, S.; Ricci, Z.; Quattrone, D.; Tofani, L.; Tujjar, O.; Villa, G.; Romano, S.M.; De Gaudio, A.R. Accuracy of invasive arterial pressure monitoring in cardiovascular patients: An observational study. Crit. Care 2014, 18, 1–11. [Google Scholar] [CrossRef]
- Stuart, R.L.; Cameron, D.R.M.; Scott, C.; Kotsanas, D.; Grayson, M.L.; Korman, T.M.; Gillespie, E.E.; Johnson, P.D.R. Peripheral intravenous catheter-associated Staphylococcus aureus bacteraemia: More than 5 years of prospective data from two tertiary health services. Med. J. Aust. 2013, 198, 551–553. [Google Scholar] [CrossRef]
- Scheer, B.V.; Perel, A.; Pfeiffer, U.J. Clinical review: Complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine. Crit. Care 2002, 6, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Wujtewicz, M.; Regent, B.; Marszałek-Ratnicka, R.; Smugała, A.; Szurowska, E.; Owczuk, R. The Incidence of Radial Artery Occlusion in Critically Ill Patients after Cannulation with a Long Catheter. J. Clin. Med. 2021, 10, 3172. [Google Scholar] [CrossRef] [PubMed]
- Jong, G.J.; Aripriharta; Horng, G.J. The PPG Physiological Signal for Heart Rate Variability Analysis. Wirel. Pers. Commun. 2017, 97, 5229–5276. [Google Scholar] [CrossRef]
- Pal, R.; Le, J.; Rudas, A.; Chiang, J.N.; Williams, T.; Alexander, B.; Joosten, A.; Cannesson, M. A review of machine learning methods for non-invasive blood pressure estimation. J. Clin. Monit. Comput. 2024, 39, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.E.W.; Pollard, T.J.; Shen, L.; Lehman, L.-W.H.; Feng, M.; Ghassemi, M.; Moody, B.; Szolovits, P.; Celi, L.A.; Mark, R.G. MIMIC-III, a freely accessible critical care database. Sci. Data 2016, 3, 160035. [Google Scholar] [CrossRef]
- Chu, Y.; Tang, K.; Hsu, Y.-C.; Huang, T.; Wang, D.; Li, W.; Savitz, S.I.; Jiang, X.; Shams, S. Non-invasive arterial blood pressure measurement and SpO2 estimation using PPG signal: A deep learning framework. BMC Med. Inform. Decis. Mak. 2023, 23, 131. [Google Scholar] [CrossRef]
- Slapničar, G.; Mlakar, N.; Luštrek, M. Blood Pressure Estimation from Photoplethysmogram Using a Spectro-Temporal Deep Neural Network. Sensors 2019, 19, 3420. [Google Scholar] [CrossRef]
- Moody, G.; Mark, R. A database to support development and evaluation of intelligent intensive care monitoring. In Proceedings of the Computers in Cardiology 1996, Indianapolis, IN, USA, 8–11 September 1996; pp. 657–660. [Google Scholar] [CrossRef]
- O’Brien, E. The British Hypertension Society protocol for the evaluation of blood pressure measuring devices. J. Hypertens. 1993, 11 (Suppl. 2), S43–S62. [Google Scholar]
- Athaya, T.; Choi, S. An estimation method of continuous non-invasive arterial blood pressure waveform using photoplethysmography: A U-Net architecture-based approach. Sensors 2021, 21, 1867. [Google Scholar] [CrossRef]
- Saeed, M.; Lieu, C.; Raber, G.; Mark, R.G. MIMIC II: A massive temporal ICU patient database to support research in intelligent patient monitoring. In Proceedings of the Computers in Cardiology, Memphis, TN, USA, 22–25 September 2002; pp. 641–644. [Google Scholar] [CrossRef]
- El Hajj, C.; Kyriacou, P.A. Cuffless and continuous blood pressure estimation from PPG signals using recurrent neural networks. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020. [Google Scholar] [CrossRef]
- Institute of Laboratory Animal Resources (US); Committee on Care, & Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals; No. 86; US Department of Health and Human Services, Public Health Service, National Institutes of Health: Washington, DC, USA, 1986.
- Snider, E.J.; Vega, S.J.; Nessen, I.A.; Torres, S.I.H.; Salazar, S.; Berard, D.; Salinas, J. In vivo evaluation of an adaptive resuscitation controller using whole blood and crystalloid infusates for hemorrhagic shock. Front. Bioeng. Biotechnol. 2024, 12, 1420330. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, T.M.; Berard, D.; Gonzalez, J.M.; Vega, S.J.; Gathright, R.; Bedolla, C.; Ross, E.; Snider, E.J. In Vivo Evaluation of Two Hemorrhagic Shock Resuscitation Controllers with Non-Invasive, Intermittent Sensors. Bioengineering 2024, 11, 1296. [Google Scholar] [CrossRef] [PubMed]
- Swindle, M.M.; Makin, A.; Herron, A.J.; Clubb, F.J., Jr.; Frazier, K.S. Swine as models in biomedical research and toxicology testing. Vet. Pathol. 2012, 49, 344–356. [Google Scholar] [CrossRef]
- Walters, E.M.; Prather, R.S. Advancing swine models for human health and diseases. Mo. Med. 2013, 110, 212. [Google Scholar] [PubMed] [PubMed Central]
- Richards, B.A.; Lillicrap, T.P.; Beaudoin, P.; Bengio, Y.; Bogacz, R.; Christensen, A.; Clopath, C.; Costa, R.P.; de Berker, A.; Ganguli, S.; et al. A deep learning framework for neuroscience. Nat. Neurosci. 2019, 22, 1761–1770. [Google Scholar] [CrossRef]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In KDD ‘16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Huang, J.-C.; Tsai, Y.-C.; Wu, P.-Y.; Lien, Y.-H.; Chien, C.-Y.; Kuo, C.-F.; Hung, J.-F.; Chen, S.-C.; Kuo, C.-H. Predictive modeling of blood pressure during hemodialysis: A comparison of linear model, random forest, support vector regression, XGBoost, LASSO regression and ensemble method. Comput. Methods Programs Biomed. 2020, 195, 105536. [Google Scholar] [CrossRef] [PubMed]
- Attivissimo, F.; D’alessandro, V.I.; De Palma, L.; Lanzolla, A.M.L.; Di Nisio, A. Non-Invasive Blood Pressure Sensing via Machine Learning. Sensors 2023, 23, 8342. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6999–7019. [Google Scholar] [CrossRef] [PubMed]
- Jogin, M.; Mohana; Madhulika, M.S.; Divya, G.D.; Meghana, R.K.; Apoorva, S. Feature Extraction using Convolution Neural Networks (CNN) and Deep Learning. In Proceedings of the 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 18–19 May 2018; pp. 2319–2323. [Google Scholar] [CrossRef]
- Shanmuganathan, V.; Yesudhas, H.R.; Khan, M.S.; Khari, M.; Gandomi, A.H. R-CNN and wavelet feature extraction for hand gesture recognition with EMG signals. Neural Comput. Appl. 2020, 32, 16723–16736. [Google Scholar] [CrossRef]
- Quintus, S.; Day, S.S.; Smith, N.J. The Efficacy and Analytical Importance of Manual Feature Extraction Using Lidar Datasets. Adv. Archaeol. Pract. 2017, 5, 351–364. [Google Scholar] [CrossRef]
- Pollreisz, D.; TaheriNejad, N. Detection and Removal of Motion Artifacts in PPG Signals. Mob. Netw. Appl. 2019, 27, 728–738. [Google Scholar] [CrossRef]
- Gupta, S.; Singh, A.; Sharma, A.; Tripathy, R.K. Higher Order Derivative-Based Integrated Model for Cuff-Less Blood Pressure Estimation and Stratification Using PPG Signals. IEEE Sens. J. 2022, 22, 22030–22039. [Google Scholar] [CrossRef]
- Goda, M.Á.; Charlton, P.H.; Behar, J.A. pyPPG: A Python toolbox for comprehensive photoplethysmography signal analysis. Physiol. Meas. 2024, 45, 045001. [Google Scholar] [CrossRef]
- Chandel, T.; Miranda, V.; Lowe, A.; Lee, T.C. Blood Pressure Measurement Device Accuracy Evaluation: Statistical Considerations with an Implementation in R. Technologies 2024, 12, 44. [Google Scholar] [CrossRef]
- Bedolla, C.N.; Gonzalez, J.M.; Vega, S.J.; Convertino, V.A.; Snider, E.J. An Explainable Machine-Learning Model for Compensatory Reserve Measurement: Methods for Feature Selection and the Effects of Subject Variability. Bioengineering 2023, 10, 612. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, J.M.; Edwards, T.H.; Hoareau, G.L.; Snider, E.J. Refinement of machine learning arterial waveform models for predicting blood loss in canines. Front. Artif. Intell. 2024, 7, 1408029. [Google Scholar] [CrossRef] [PubMed]
AI Model | R2 | RMSE | Accuracy |
---|---|---|---|
RT-CNN-LSTM | 0.470 | 9.70 mmHg | 62.4% |
CNN-LSTM | 0.666 | 8.46 mmHg | 83.1% |
MFE XGBoost | 0.724 | 6.94 mmHg | 88.2% |
MFE LSTM | 0.866 | 5.87 mmHg | 90.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez, J.M.; Vega, S.J.; Mosely, S.V.; Pascua, S.V.; Rodgers, T.M.; Snider, E.J. Machine Learning Prediction of Mean Arterial Pressure from the Photoplethysmography Waveform During Hemorrhagic Shock and Fluid Resuscitation. Sensors 2025, 25, 5035. https://doi.org/10.3390/s25165035
Gonzalez JM, Vega SJ, Mosely SV, Pascua SV, Rodgers TM, Snider EJ. Machine Learning Prediction of Mean Arterial Pressure from the Photoplethysmography Waveform During Hemorrhagic Shock and Fluid Resuscitation. Sensors. 2025; 25(16):5035. https://doi.org/10.3390/s25165035
Chicago/Turabian StyleGonzalez, Jose M., Saul J. Vega, Shakayla V. Mosely, Stefany V. Pascua, Tina M. Rodgers, and Eric J. Snider. 2025. "Machine Learning Prediction of Mean Arterial Pressure from the Photoplethysmography Waveform During Hemorrhagic Shock and Fluid Resuscitation" Sensors 25, no. 16: 5035. https://doi.org/10.3390/s25165035
APA StyleGonzalez, J. M., Vega, S. J., Mosely, S. V., Pascua, S. V., Rodgers, T. M., & Snider, E. J. (2025). Machine Learning Prediction of Mean Arterial Pressure from the Photoplethysmography Waveform During Hemorrhagic Shock and Fluid Resuscitation. Sensors, 25(16), 5035. https://doi.org/10.3390/s25165035