A Deep Learning Approach for Classifying Developmental Stages of Ixodes ricinus Ticks on Images Captured Using a Microscope’s High-Resolution CMOS Sensor
Abstract
1. The Problem and Its Background
Ticks Classification
2. Dataset Description
3. Methods
3.1. Training on the Pre-Trained Xception Model
3.2. Training
3.3. Evaluation
3.4. Model Explainability: Grad-CAM Method
4. Results
Impact of Grayscale and Testing on Unseen Images
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nava, S. Ticks of Europe and North Africa: A Guide to Species Identification; Estrada-Peña, A., Mihalca, A.D., Petney, T., Eds.; Springer International Publishing: Cham, Switzerland, 2017; 404p, ISBN 978-3-319-63759-4. [Google Scholar] [CrossRef]
- Kahl, O.; Gray, J.S. The biology of Ixodes ricinus with emphasis on its ecology. Ticks Tick-Borne Dis. 2023, 14, 102114. [Google Scholar] [CrossRef]
- Sprong, H.; Azagi, T.; Hoornstra, D.; Nijhof, A.M.; Knorr, S.; Baarsma, M.E.; Hovius, J.W. Control of Lyme borreliosis and other Ixodes ricinus-borne diseases. Parasites Vectors 2018, 11, 145. [Google Scholar] [CrossRef]
- Strnad, M.; Hönig, V.; Růžek, D.; Grubhoffer, L.; Rego, R.O.M. Europe-Wide Meta-Analysis of Borrelia burgdorferi Sensu Lato Prevalence in Questing Ixodes ricinus Ticks. Appl. Environ. Microbiol. 2017, 83, e00609-17. [Google Scholar] [CrossRef] [PubMed]
- Adamska, M. The role of different species of wild ungulates and Ixodes ricinus ticks in the circulation of genetic variants of Anaplasma phagocytophilum in a forest biotope in north-western Poland. Ticks Tick-Borne Dis. 2020, 11, 101465. [Google Scholar] [CrossRef] [PubMed]
- Nowak, M. Fauna Kleszczy (Ixodida) Europy Środkowej; Wydawnictwo Naukowe Uniwersyetu Pedagogicznego: Kraków, Poland, 2013. [Google Scholar]
- Vechtova, P.; Fussy, Z.; Cegan, R.; Sterba, J.; Erhart, J.; Benes, V.; Grubhoffer, L. Catalogue of stage-specific transcripts in Ixodes ricinus and their potential functions during the tick life-cycle. Parasites Vectors 2020, 13, 311. [Google Scholar] [CrossRef]
- Roe, R.M.; Donahue, K.; Khalil, S.; Bissinger, B.W.; Zhu, J.; Sonenshine, D.E. Hormonal regulation of metamorphosis and reproduction in ticks. Biol. Ticks 2013, 1, 416. [Google Scholar] [CrossRef]
- Walker, A.R. Review of “Ticks: Biology, Disease and Control” by Alan Bowman & Patricia Nuttall (eds.). Parasites Vectors 2009, 2, 1. [Google Scholar] [CrossRef]
- Braks, M.A.; van Wieren, S.E.; Takken, W.; Sprong, H. (Eds.) Life cycle and ecology of Ixodes ricinus: The roots of public health importance. In Ecology and Prevention of Lyme borreliosis; Wageningen Academic: Wageningen, The Netherlands, 2016; pp. 31–40. [Google Scholar] [CrossRef]
- Balashov, Y.S. Ixodid Ticks-Parasites and Vectors of Diseases; Nauka: Saint Petersburg, Russia, 1998; 287p. [Google Scholar]
- Honzakova, E.; Olejnicek, J.; Cerny, V.; Daniel, M.; Dusbabek, F. Relationship between number of eggs deposited and body weight of engorged Ixodes ricinus female. Folia Parasitol. 1975, 22, 37–43. [Google Scholar]
- Gray, J.S.; Kahl, O.; Lane, R.S.; Levin, M.L.; Tsao, J.I. Diapause in ticks of the medically important Ixodes ricinus species complex. Ticks Tick-Borne Dis. 2016, 7, 992–1003. [Google Scholar] [CrossRef]
- Helble, J.D.; McCarthy, J.E.; Hu, L.T. Interactions between Borrelia burgdorferi and its hosts across the enzootic cycle. Parasite Immunol. 2021, 43, e12816. [Google Scholar] [CrossRef]
- Berglund, J.; Eitrem, R.; Ornstein, K.; Lindberg, A.; Ringnér, Å.; Elmrud, H.; Carlsson, M.; Runehagen, A.; Svanborg, C.; Norrby, R. An epidemiologic study of Lyme disease in southern Sweden. N. Engl. J. Med. 1995, 333, 1319–1324. [Google Scholar] [CrossRef] [PubMed]
- Wilhelmsson, P.; Lindblom, P.; Fryland, L.; Nyman, D.; Jaenson, T.G.; Forsberg, P.; Lindgren, P.E. Ixodes ricinus ticks removed from humans in Northern Europe: Seasonal pattern of infestation, attachment sites and duration of feeding. Parasites Vectors 2013, 6, 362. [Google Scholar] [CrossRef]
- Ebel, G.D.; Kramer, L.D. Duration of tick attachment required for transmission of Powassan virus by deer ticks. Am. J. Trop. Med. Hyg. 2004, 71, 268–271. [Google Scholar] [CrossRef] [PubMed]
- Alekseev, A.N.; Burenkova, L.A.; Vasilieva, I.S.; Dubinina, H.V.; Chunikhin, S.P. Preliminary studies on virus and spirochete accumulation in the cement plug of ixodid ticks. Exp. Appl. Acarol. 1996, 20, 713–723. [Google Scholar] [CrossRef]
- Fourie, J.J.; Stanneck, D.; Luus, H.G.; Beugnet, F.; Wijnveld, M.; Jongejan, F. Transmission of Ehrlichia canis by Rhipicephalus sanguineus ticks feeding on dogs and on artificial membranes. Vet. Parasitol. 2013, 197, 595–603. [Google Scholar] [CrossRef]
- Katavolos, P.; Armstrong, P.M.; Dawson, J.E.; Telford, S.R., III. Duration of tick attachment required for transmission of granulocytic ehrlichiosis. J. Infect. Dis. 1998, 177, 1422–1425. [Google Scholar] [CrossRef]
- Piesman, J.; Spielman, A. Human babesiosis on Nantucket Island: Prevalence of Babesia microti in ticks. Am. J. Trop. Med. Hyg. 1980, 29, 742–746. [Google Scholar] [CrossRef]
- Tahir, D.; Meyer, L.; Fourie, J.; Jongejan, F.; Mather, T.; Choumet, V.; Blagburn, B.; Straubinger, R.K.; Varloud, M. Interrupted Blood Feeding in Ticks: Causes and Consequences. Microorganisms 2020, 8, 910. [Google Scholar] [CrossRef]
- Piesman, J. Dynamics of Borrelia burgdorferi transmission by nymphal Ixodes dammini ticks. J. Infect. Dis. 1993, 167, 1082–1085. [Google Scholar] [CrossRef]
- Kahl, O.; Janetzki-Mittmann, C.; Gray, J.; Jonas, R.; Stein, J.; de Boer, R. Risk of Infection with Borrelia burgdorferi sense lato for a Host in Relation to the Duration of Nymphal Ixodes ricinus Feeding and the Method of Tick Removal. Zentralblatt Bakteriol. 1998, 287, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Beugnet, F.; Madder, M.; Joubert, A.; Bouzaidi Cheikhi, I.; Chajia, M.; Besselaar, J.F.; Tan, D.Y. Assessment of the speed of transmission of Ehrlichia canis, Anaplasma phagocytophilum, and Borrelia burgdorferi sensu stricto by infected ticks through an in vitro experimental model. Parasites Vectors 2025, 18, 182. [Google Scholar] [CrossRef]
- Piesman, J.; Schneider, B.S.; Zeidner, N.S. Use of quantitative PCR to measure density of Borrelia burgdorferi in the midgut and salivary glands of feeding tick vectors. J. Clin. Microbiol. 2001, 39, 4145–4148. [Google Scholar] [CrossRef]
- Lejal, E.; Moutailler, S.; Šimo, L.; Vayssier-Taussat, M.; Pollet, T. Tick-borne pathogen detection in midgut and salivary glands of adult Ixodes ricinus. Parasites Vectors 2019, 12, 152. [Google Scholar] [CrossRef]
- Cook, M.J. Lyme borreliosis: A review of data on transmission time after tick attachment. Int. J. Gen. Med. 2015, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.; Stanek, G.; Kundi, M.; Kocianova, E. Dimensions of engorging Ixodes ricinus as a measure of feeding duration. Int. J. Med. Microbiol. 2005, 295, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Hoxmeier, J.C.; Fleshman, A.C.; Broeckling, C.D.; Prenni, J.E.; Dolan, M.C.; Gage, K.L.; Eisen, L. Metabolomics of the tick-Borrelia interaction during the nymphal tick blood meal. Sci. Rep. 2017, 7, 44394. [Google Scholar] [CrossRef] [PubMed]
- Caimano, M.J.; Drecktrah, D.; Kung, F.; Samuels, D.S. Interaction of the Lyme disease spirochete with its tick vector. Cell. Microbiol. 2016, 18, 919–927. [Google Scholar] [CrossRef]
- Fraser, C.M.; Casjens, S.; Huang, W.M.; Sutton, G.G.; Clayton, R.; Lathigra, R.; White, O.; Ketchum, K.A.; Dodson, R.; Hickey, E.K.; et al. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 1997, 390, 580–586. [Google Scholar] [CrossRef]
- Iyer, R.; Caimano, M.J.; Luthra, A.; Axline, D., Jr.; Corona, A.; Iacobas, D.A.; Radolf, J.D.; Schwartz, I. Stage-specific global alterations in the transcriptomes of L yme disease spirochetes during tick feeding and following mammalian host adaptation. Mol. Microbiol. 2015, 95, 509–538. [Google Scholar] [CrossRef]
- Dunham-Ems, S.M.; Caimano, M.J.; Pal, U.; Wolgemuth, C.W.; Eggers, C.H.; Balic, A.; Radolf, J.D. Live imaging reveals a biphasic mode of dissemination of Borrelia burgdorferi within ticks. J. Clin. Investig. 2009, 119, 3652–3665. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, D.G.; Soares, H.S.; Soares, J.F.; Labruna, M.B. Feeding period required by Amblyomma aureolatum ticks for transmission of Rickettsia rickettsii to vertebrate hosts. Emerg. Infect. Dis. 2014, 20, 1504. [Google Scholar] [CrossRef]
- Wang, H.; Henbest, P.; Nuttall, P. Successful interrupted feeding of adult Rhipicephalus appendiculatus (Ixodidae) is accompanied by re-programming of salivary gland protein expression. Parasitology 1999, 119, 143–149. [Google Scholar] [CrossRef]
- Varloud, M.; Liebenberg, J.; Fourie, J. Early Babesia canis transmission in dogs within 24 h and 8 h of infestation with infected pre-activated male Dermacentor reticulatus ticks. Parasites Vectors 2018, 11, 41. [Google Scholar] [CrossRef] [PubMed]
- Rauter, C.; Hartung, T. Prevalence of Borrelia burgdorferi sensu lato genospecies in Ixodes ricinus ticks in Europe: A metaanalysis. Appl. Environ. Microbiol. 2005, 71, 7203–7216. [Google Scholar] [CrossRef] [PubMed]
- Richter, D.; Debski, A.; Hubalek, Z.; Matuschka, F.R. Absence of Lyme disease spirochetes in larval Ixodes ricinus ticks. Vector-Borne Zoonotic Dis. 2012, 12, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Pintér, R.; Madai, M.; Vadkerti, E.; Németh, V.; Oldal, M.; Kemenesi, G.; Dallos, B.; Gyuranecz, M.; Kiss, G.; Bányai, K.; et al. Identification of tick-borne encephalitis virus in ticks collected in southeastern Hungary. Ticks Tick-Borne Dis. 2013, 4, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Meiners, T.; Hammer, B.; Göbel, U.B.; Kahl, O. Determining the tick scutal index allows assessment of tick feeding duration and estimation of infection risk with Borrelia burgdorferi sensu lato in a person bitten by an Ixodes ricinus nymph. Int. J. Med Microbiol. 2006, 296, 103–107. [Google Scholar] [CrossRef]
- Dillinger, S.; Kesel, A. Changes in the structure of the cuticle of Ixodes ricinus L. 1758 (Acari, Ixodidae) during feeding. Arthropod Struct. Dev. 2002, 31, 95–101. [Google Scholar] [CrossRef]
- Žekić, M.; Kišek, T.C.; Cvitković-Špik, V.; Ružić-Sabljić, E.; Gajdov, V.; Potkonjak, A.; Jurišić, A.; Savić, S. Molecular Detection and Characterization of Tick-Borne Pathogens in Ixodes ricinus Ticks Collected from Humans. Pathogens 2025, 14, 528. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Kittichai, V.; Kaewthamasorn, M.; Samung, Y.; Jomtarak, R.; Naing, K.M.; Tongloy, T.; Chuwongin, S.; Boonsang, S. Automatic identification of medically important mosquitoes using embedded learning approach-based image-retrieval system. Sci. Rep. 2023, 13, 10609. [Google Scholar] [CrossRef]
- Justen, L.; Carlsmith, D.; Paskewitz, S.M.; Bartholomay, L.C.; Bron, G.M. Identification of public submitted tick images: A neural network approach. PLoS ONE 2021, 16, e0260622. [Google Scholar] [CrossRef]
- Cannet, A.; Simon-Chane, C.; Histace, A.; Akhoundi, M.; Romain, O.; Souchaud, M.; Jacob, P.; Sereno, D.; Gouagna, L.C.; Bousses, P.; et al. Wing Interferential Patterns (Wips) and machine learning for the classification of some Aedes species of medical interest. Sci. Rep. 2023, 13, 17628. [Google Scholar] [CrossRef] [PubMed]
- Salomon, J.; Hamer, S.A.; Swei, A. A Beginner’s Guide to Collecting Questing Hard Ticks (Acari: Ixodidae): A Standardized Tick Dragging Protocol. J. Insect Sci. 2020, 20, 11. [Google Scholar] [CrossRef]
- Fossum, E.R. The Invention of CMOS Image Sensors: A Camera in Every Pocket. In Proceedings of the 2020 Pan Pacific Microelectronics Symposium (Pan Pacific), Big Island, HI, USA, 10–13 February 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Sukhavasi, S.B.; Sukhavasi, S.B.; Elleithy, K.; Abuzneid, S.; Elleithy, A. CMOS Image Sensors in Surveillance System Applications. Sensors 2021, 21, 488. [Google Scholar] [CrossRef]
- El Gamal, A.; Eltoukhy, H. CMOS image sensors. IEEE Circuits Devices Mag. 2005, 21, 6–20. [Google Scholar] [CrossRef]
- Van Rossum, G.; Drake, F.L., Jr. Python Tutorial; Centrum Voor Wiskunde en Informatica: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009. [Google Scholar]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. Software. Available online: www.tensorflow.org (accessed on 12 August 2025).
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. Int. J. Comput. Vis. 2020, 128, 336–359. [Google Scholar] [CrossRef]
- Raif, P.; Suchanek-Raif, R.; Tkacz, E. Explainable AI (XAI) in healthcare—Tools and regulations. In Proceedings of the 2023 IEEE EMBS Special Topic Conference on Data Science and Engineering in Healthcare, Medicine and Biology, St. Julians, Malta, 7–9 December 2023. [Google Scholar]
- Itseez. The OpenCV Reference Manual, 2.4.9.0 ed. 2014. Available online: https://answers.opencv.org/question/32411/opencv-bibtex-citation/ (accessed on 12 August 2025).
- Itseez. Open Source Computer Vision Library. Available online: http://github.com/itseez/opencv (accessed on 12 August 2025).
- Luo, C.Y.; Pearson, P.; Xu, G.; Rich, S.M. A computer vision-based approach for tick identification using deep learning models. Insects 2022, 13, 116. [Google Scholar] [CrossRef] [PubMed]
- Omodior, O.; Saeedpour-Parizi, M.R.; Rahman, M.K.; Azad, A.; Clay, K. Using convolutional neural networks for tick image recognition—A preliminary exploration. Exp. Appl. Acarol. 2021, 84, 607–622. [Google Scholar] [CrossRef]
- Akbarian, S.; Nelder, M.P.; Russell, C.B.; Cawston, T.; Moreno, L.; Patel, S.N.; Allen, V.G.; Dolatabadi, E. A computer vision approach to identifying ticks related to lyme disease. IEEE J. Transl. Eng. Health Med. 2022, 10, 4900308. [Google Scholar] [CrossRef]
- Suresh, P.; Priyanka, L.; Murali Krishna, K.; Kamal Srinivas, P.; Pavan Kumar, Y. Advancing Lyme Disease Prevention Through Computer Vision: A Robust Approach for Tick Identification. EPRA Int. J. Res. Dev. (IJRD) 2024, 9, 73–81. [Google Scholar] [CrossRef]
- Piesman, J. Strategies for reducing the risk of Lyme borreliosis in North America. Int. J. Med. Microbiol. 2006, 296, 17–22. [Google Scholar] [CrossRef]
- Nadelman, R.B.; Nowakowski, J.; Fish, D.; Falco, R.C.; Freeman, K.; McKenna, D.; Welch, P.; Marcus, R.; Agüero-Rosenfeld, M.E.; Dennis, D.T.; et al. Prophylaxis with single-dose doxycycline for the prevention of lyme disease after anixodes scapularistick bite. N. Engl. J. Med. 2001, 345, 79–84. [Google Scholar] [CrossRef]
- Boulanger, N.; Aran, D.; Maul, A.; Camara, B.; Barthel, C.; Zaffino, M.; Lett, M.C.; Schnitzler, A.; Bauda, P. Multiple factors affecting Ixodes ricinus ticks and associated pathogens in European temperate ecosystems (northeastern France). Sci. Rep. 2024, 14, 9391. [Google Scholar] [CrossRef]
- Genaev, M.A.; Komyshev, E.; Shishkina, O.; Adonyeva, N.; Karpova, E.; Gruntenko, N.; Zakharenko, L.; Koval, V.; Afonnikov, D. Classification of Fruit Flies by Gender in Images Using Smartphones and the YOLOv4-Tiny Neural Network. Mathematics 2022, 10, 295. [Google Scholar] [CrossRef]
- Rathore, N.; Agrawal, D. Automated precision beekeeping for accessing bee brood development and behavior using deep CNN. Bull. Entomol. Res. 2024, 114, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Ding, X.; Yin, K.; Li, Z.; Smyth, J.A.; Sims, M.B.; McGinnis, H.A.; Liu, C. TickPhone App: A Smartphone Application for Rapid Tick Identification Using Deep Learning. Appl. Sci. 2021, 11, 7355. [Google Scholar] [CrossRef]
- Butler, A.D.; Carlson, M.L.; Nelson, C.A. Use of a tick-borne disease manual increases accuracy of tick identification among primary care providers in Lyme disease endemic areas. Ticks Tick-Borne Dis. 2017, 8, 262–265. [Google Scholar] [CrossRef] [PubMed]
ID | Dataset Size | Image Characterization | Image Res. | Tick Species |
---|---|---|---|---|
1 | 12,000 | microscopic, white background | 3648 × 2736 | Amblyomma americanum, Dermacentor variabilis, Ixodes scapularis |
2 | 12,777 | random internet-user captured | 224 × 224 | Amblyomma americanum, Dermacentor variabilis, Ixodes scapularis |
3 | 2130 | microscopic, white background | 224 × 224 | Ixodes scapularis, Dermacentor variabilis, Amblyomma—americanum Haemaphysalis sp. |
4 | 1258 | microscopic, white background | 300 × 300 | Ixodes scapularis vs. other species |
5 | 1323 | microscopic, white background | 320 × 320 or 512 × 512 | Ixodes ricinus |
ID | Network Architecture | Validation Accuracy | Prediction Accuracy | Reference |
---|---|---|---|---|
1 | VGG | 99.37% | — | [59] |
ResNet50 | 99.42% | — | ||
InceptionV3 | 99.50% | — | ||
DenseNet121 | 99.20% | — | ||
MobileNet121 | 98.73% | — | ||
2 | InceptionV3 | 92.00% | 87.80% | [46] |
3 | ResNet50 | 94.00% | 75.00% | [60] |
Custom model | 99.10% | 80.00% | ||
4 | Inception-ResNet | 92.04% | — | [61] |
Custom model | 91.68% | — | ||
5 | Xception | 95.00% | — | this work |
Xception (High Resolution Images) | 98.00% | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marzec, A.; Filipowska, A.; Humeniuk, O.; Filipowski, W.; Raif, P. A Deep Learning Approach for Classifying Developmental Stages of Ixodes ricinus Ticks on Images Captured Using a Microscope’s High-Resolution CMOS Sensor. Sensors 2025, 25, 5038. https://doi.org/10.3390/s25165038
Marzec A, Filipowska A, Humeniuk O, Filipowski W, Raif P. A Deep Learning Approach for Classifying Developmental Stages of Ixodes ricinus Ticks on Images Captured Using a Microscope’s High-Resolution CMOS Sensor. Sensors. 2025; 25(16):5038. https://doi.org/10.3390/s25165038
Chicago/Turabian StyleMarzec, Aleksandra, Anna Filipowska, Oliwia Humeniuk, Wojciech Filipowski, and Paweł Raif. 2025. "A Deep Learning Approach for Classifying Developmental Stages of Ixodes ricinus Ticks on Images Captured Using a Microscope’s High-Resolution CMOS Sensor" Sensors 25, no. 16: 5038. https://doi.org/10.3390/s25165038
APA StyleMarzec, A., Filipowska, A., Humeniuk, O., Filipowski, W., & Raif, P. (2025). A Deep Learning Approach for Classifying Developmental Stages of Ixodes ricinus Ticks on Images Captured Using a Microscope’s High-Resolution CMOS Sensor. Sensors, 25(16), 5038. https://doi.org/10.3390/s25165038