Time and Frequency Domain Analysis of IMU-Based Orientation Estimation Algorithms with Comparison to Robotic Arm Orientation as Reference †
Abstract
1. Introduction
2. Filters
2.1. Indirect Kalman Filter
2.2. Complementary Filter
2.3. Madgwick Filter
- Normalize accelerometer: .
- Compute gyro quaternion derivative: .
- Compute using Jacobian and error .
- Normalize gradient: .
- Apply correction: .
- Integrate quaternion: .
- Normalize .
3. Experimental Setup
4. Time Domain Evaluation
4.1. Description and Methodology
4.1.1. Pose Sequence Signal
4.1.2. Metrics
4.2. Results
5. Frequency Domain Evaluation
5.1. Description and Methodology
5.1.1. Discrete Fourier Transform
5.1.2. Windowing
5.1.3. Generalized Binary Noise
5.1.4. Composite Frequency Response
- Segmenting the input and output signals into the segments that have 50% overlap,
- Windowing each segment with Hanning windows to reduce spectral leakage,
- Applying DFT, more specifically Chirp-Z transform, on each window,
- Calculation of auto- and cross spectral densities across the windows,
- Calculation of the frequency response and coherence based on the auto- and cross-spectral densities using Multiple Input Single Output (MISO) conditioning,
5.1.5. Metrics
5.1.6. Evaluation Example
5.2. Results
6. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AETD | Averaged Equivalent Time Delay |
CAN | Controller Area Network |
CF | Complementary Filter |
CZT | Chirp Z-Transform |
DFT | Discrete Fourier Transform |
DLR | German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt) |
DoF | Degrees of Freedom |
DTFT | Discrete-Time Fourier Transform |
EKF | Extended Kalman Filter |
ESKF | Error State Kalman Filter |
FFT | Fast Fourier Transform |
GBN | Generalized Binary Noise |
IKF | Indirect Kalman Filter |
IMU | Inertial Measurement Unit |
LTI | Linear Time-Invariant |
MaxAE | Maximum Absolute Error |
MF | Madgwick Filter |
MISO | Multiple Input Single Output |
NED | North-East-Down |
RMSE | Root Mean Squared Error |
RMSEC | RMSE of composite Coherence |
RMSEM | RMSE of composite frequency response Magnitude |
RTDE | Real-Time Data Exchange |
TCP | Tool Center Point |
TCP/IP | Transmission Control Protocol / Internet Protocol |
References
- Sultan, R.; Greiser, S.; Brix, N. Time and Frequency Domain Analysis of IMU-based Orientation Estimation Algorithms with Comparison to Robotic Arm Orientation as Reference. In Proceedings of the 10th International Conference on Sensors and Electronic Instrumentation Advances (SEIA’ 2024), Ibiza, Spain, 25–27 September 2024; IFSA Publishing, S.L.: Barcelona, Spain, 2024; pp. 87–93. [Google Scholar]
- Madgwick, S.O.H.; Harrison, A.J.L.; Vaidyanathan, A. Estimation of IMU and MARG orientation using a gradient descent algorithm. In Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011; Volume 2011, p. 5975346. [Google Scholar] [CrossRef]
- Roetenberg, D.; Luinge, H.J.; Baten, C.T.M.; Veltink, P.H. Compensation of magnetic disturbances improves inertial and magnetic sensing of human body segment orientation. IEEE Trans. Neural Syst. Rehabil. Eng. 2005, 13, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Valenti, R.G.; Dryanovski, I.; Xiao, J. Keeping a Good Attitude: A Quaternion-Based Orientation Filter for IMUs and MARGs. Sensors 2015, 15, 19302–19330. [Google Scholar] [CrossRef] [PubMed]
- Shuster, M.D. A Survey of Attitude Representations. J. Astronaut. Sci. 1993, 41, 439–517. [Google Scholar]
- Jia, Y.B. Foundations of Robotics and Computer Vision (COMS 4770/5770). Available online: https://faculty.sites.iastate.edu/jia/foundations-robotics-and-computer-vision-coms-47705770 (accessed on 14 April 2025).
- Madyastha, V.; Ravindra, V.; Mallikarjunan, S.; Goyal, A. Extended Kalman Filter vs. Error State Kalman Filter for Aircraft Attitude Estimation. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, Reston, VA, USA, 8–11 August 2011. [Google Scholar] [CrossRef]
- Do, H.V.; Song, J.w. Error-State Kalman Filtering with Linearized State Constraints. Aerospace 2025, 12, 243. [Google Scholar] [CrossRef]
- Seher-Weiss, S. FitlabGui—A MATLAB Tool for Flight Data Analysis and Parameter Estimation, Version 2.5. 2015. Available online: https://www.researchgate.net/publication/303708111_FitlabGui_-_A_MATLAB_Tool_for_Flight_Data_Analysis_and_Parameter_Estimation_-_Version_25 (accessed on 4 April 2025).
- Sorriento, A.; Porfido, M.B.; Mazzoleni, S.; Calvosa, G.; Tenucci, M.; Ciuti, G.; Dario, P. Optical and Electromagnetic Tracking Systems for Biomedical Applications: A Critical Review on Potentialities and Limitations. IEEE Rev. Biomed. Eng. 2020, 13, 212–232. [Google Scholar] [CrossRef] [PubMed]
- Cavallo, A.; Cirillo, A.; Cirillo, P.; De Maria, G.; Falco, P.; Natale, C.; Pirozzi, S. Experimental Comparison of Sensor Fusion Algorithms for Attitude Estimation. In Proceedings of the 19th IFAC World Congress, Cape Town, South Africa, 24–29 August 2014. [Google Scholar]
- El-Gohary, M.; McNames, J. Human Joint Angle Estimation with Inertial Sensors and Validation with A Robot Arm. IEEE Trans. Biomed. Eng. 2015, 62, 1759–1767. [Google Scholar] [CrossRef] [PubMed]
- Ricci, L.; Taffoni, F.; Formica, D. On the Orientation Error of IMU: Investigating Static and Dynamic Accuracy Targeting Human Motion. PLoS ONE 2016, 11, e0161940. [Google Scholar] [CrossRef] [PubMed]
- Hislop, J.; Isaksson, M.; McCormick, J.; Hensman, C. Validation of 3-Space Wireless Inertial Measurement Units Using an Industrial Robot. Sensors 2021, 21, 6858. [Google Scholar] [CrossRef] [PubMed]
- Kuti, J.; Piricz, T.; Galambos, P. A Robust Method for Validating Orientation Sensors Using a Robot Arm as a High-Precision Reference. Sensors 2024, 24, 8179. [Google Scholar] [CrossRef] [PubMed]
- MathWorks. MATLAB ImuFilter System Object. 2024. Available online: https://de.mathworks.com/help/nav/ref/imufilter-system-object.html (accessed on 14 April 2025).
- MathWorks. MATLAB ComplementaryFilter System Object. 2024. Available online: https://de.mathworks.com/help/fusion/ref/complementaryfilter-system-object.html (accessed on 14 April 2025).
- Mahony, R.; Hamel, T.; Pflimlin, J.M. Nonlinear complementary filters on the special orthogonal group. IEEE Trans. Autom. Control 2008, 53, 1203–1218. [Google Scholar] [CrossRef]
- ISO 9283; Manipulating Industrial Robots—Performance Criteria and Related Test Methods. International Organization for Standardization: Geneva, Switzerland, 1998.
- Universal Robots A/S. UR5e E-Series Datasheet. 2024. Available online: https://www.universal-robots.com/media/1807465/ur5e_e-series_datasheets_web.pdf (accessed on 28 July 2025).
- Universal Robots A/S. Real-Time Data Exchange (RTDE) Guide. 2024. Available online: https://docs.universal-robots.com/tutorials/communication-protocol-tutorials/rtde-guide.html (accessed on 28 July 2025).
- Bosch Rexroth AG. Inertial Measurement Unit MM7.10: Technical Customer Documentation; Bosch Rexroth AG: Lohr a. Main, Germany, 2022. [Google Scholar]
- Oppenheim, A.V.; Schafer, R.W. Discrete-Time Signal Processing, 3rd ed.; Prentice Hall: Hoboken, NJ, USA, 2013; p. 1056. [Google Scholar]
- Rabiner, L.R.; Schafer, R.W.; Rader, C.M. The chirp z-transform algorithm and its application. Bell Syst. Tech. J. 1969, 48, 1249–1292. [Google Scholar] [CrossRef]
- Smith, S.W. The Scientist and Engineer’s Guide to Digital Signal Processing; California Technical Publishing: San Diego, CA, USA, 1997. [Google Scholar]
- Mitra, S.K. Digital Signal Processing: A Computer-Based Approach, 4th ed.; McGraw-Hill: New York, NY, USA, 2010. [Google Scholar]
- Chen, J.K.; Yu, C.C. Optimal input design using generalized binary sequence. Automatica 1997, 33, 2081–2084. [Google Scholar] [CrossRef]
- Tulleken, H.J. Generalized binary noise test-signal concept for improved identification-experiment design. Automatica 1990, 26, 37–49. [Google Scholar] [CrossRef]
- Oppenheim, A.V.; Willsky, A.S.; Nawab, S.H. Signals and Systems, 2nd ed.; Prentice Hall: Hoboken, NJ, USA, 1997. [Google Scholar]
- Harris, F.J. On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 1978, 66, 51–83. [Google Scholar] [CrossRef]
- Tischler, M.B.; Remple, R.K. Aircraft and Rotorcraft System Identification, 2nd ed.; American Institute of Aeronautics and Astronautics, Inc.: Washington, DC, USA, 2012. [Google Scholar] [CrossRef]
- Sridhar, J.K.; Wulff, G. Application of Multiple-Input/Single-Output Analysis Procedures to Flight Test Data. J. Guid. Control. Dyn. 1991, 14, 645–651. [Google Scholar] [CrossRef]
- Haidekker, M.A. (Ed.) Linear Feedback Controls; Elsevier: Oxford, UK, 2013. [Google Scholar]
Parameter | Gyroscope | Accelerometer |
---|---|---|
Nominal measurement range | ±163°/s | ±41 m/s2 |
Cut-off frequency (−3 dB) | 15 Hz | 15 Hz |
Sensitivity error | ±2.0% | ±2.0% |
Non-linearity | ±0.5°/s | ±0.4 m/s2 |
Offset (bias) | ±1.0°/s | ±0.5 m/s2 |
Cross axis sensitivity | ±1.5% | ±1.5% |
Output noise | 0.2°/s RMS | 0.04 m/s2 RMS |
Resolution (absolute) | 0.05°/s | 0.022 m/s2 |
Pose Sequence | Filter Type | RMSE|MaxAE Roll (°) | RMSE|MaxAE Pitch (°) | RMSE|MaxAE Sum (°) |
---|---|---|---|---|
Test Signal 1 | IKF | 2.07|5.62 | 0.99|2.41 | 3.06|8.03 |
CF | 0.68|1.75 | 0.56|1.34 | 1.24|3.09 | |
MF | 0.46|1.54 | 0.40|1.05 | 0.86|2.59 | |
Test Signal 2 | IKF | 2.14|6.22 | 1.08|5.58 | 3.22|11.80 |
CF | 1.88|4.60 | 1.17|3.23 | 3.05|7.83 | |
MF | 1.79|4.84 | 1.18|3.86 | 2.97| 8.70 | |
Test Signal 3 | IKF | 0.59|1.45 | 0.58|0.94 | 1.17|2.39 |
CF | 0.53| 1.11 | 0.54|0.86 | 1.07|1.97 | |
MF | 0.55|1.23 | 0.57|0.97 | 1.12 |2.20 |
GBN Signal | Filter Type | RMSEM (dB) | RMSEC | AETD (ms) |
---|---|---|---|---|
Roll only | IKF | 0.70 | 0.005 | 2 |
CF | 0.14 | 0.004 | 5 | |
MF | 0.14 | 0.003 | 7 | |
Pitch only | IKF | 0.16 | 0.003 | 1 |
CF | 0.07 | 0.005 | 6 | |
MF | 0.06 | 0.003 | 4 | |
Roll and pitch | IKF | 0.88 | 0.008 | 3 |
CF | 0.28 | 0.007 | 7 | |
MF | 0.24 | 0.006 | 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sultan, R.; Greiser, S. Time and Frequency Domain Analysis of IMU-Based Orientation Estimation Algorithms with Comparison to Robotic Arm Orientation as Reference. Sensors 2025, 25, 5161. https://doi.org/10.3390/s25165161
Sultan R, Greiser S. Time and Frequency Domain Analysis of IMU-Based Orientation Estimation Algorithms with Comparison to Robotic Arm Orientation as Reference. Sensors. 2025; 25(16):5161. https://doi.org/10.3390/s25165161
Chicago/Turabian StyleSultan, Ruslan, and Steffen Greiser. 2025. "Time and Frequency Domain Analysis of IMU-Based Orientation Estimation Algorithms with Comparison to Robotic Arm Orientation as Reference" Sensors 25, no. 16: 5161. https://doi.org/10.3390/s25165161
APA StyleSultan, R., & Greiser, S. (2025). Time and Frequency Domain Analysis of IMU-Based Orientation Estimation Algorithms with Comparison to Robotic Arm Orientation as Reference. Sensors, 25(16), 5161. https://doi.org/10.3390/s25165161