Detecting the Type and Severity of Mineral Nutrient Deficiency in Rice Plants Based on an Intelligent microRNA Biosensing Platform
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials, Growth Conditions, and Treatments
2.2. microRNA Measurement Using the Biosensor
2.3. Database Preparation
2.4. Machine Learning Implementation
3. Results and Discussion
3.1. Performance Characteristics of the Electrochemical Biosensor
3.2. Changes in microRNA Concentration Toward Nutrient Deficiency
3.3. Machine Performance in Predicting Stress Type and Severity Levels
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Asefpour Vakilian, K. Gold nanoparticles-based biosensor can detect drought stress in tomato by ultrasensitive and specific determination of miRNAs. Plant Physiol. Biochem. 2019, 145, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Zandalinas, S.I.; Mittler, R. Plant responses to multifactorial stress combination. New Phytol. 2022, 234, 1161–1167. [Google Scholar] [CrossRef] [PubMed]
- Gul, N.; Nowshehri, J.A.; Mir, M.A.; Wani, S.; Mir, J.I.; Bhat, M.A. MicroRNA: A novel micro-machinery to target crop plants for tolerance to temperature stress. Plant Mol. Biol. Rep. 2024, 42, 48–56. [Google Scholar] [CrossRef]
- Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 2014, 15, 509–524. [Google Scholar] [CrossRef]
- Luo, P.; Di, D.; Wu, L.; Yang, J.; Lu, Y.; Shi, W. MicroRNAs are involved in regulating plant development and stress response through fine-tuning of TIR1/AFB-dependent auxin signaling. Int. J. Mol. Sci. 2022, 23, 510. [Google Scholar] [CrossRef]
- Yang, Y.; Liang, Y.; Wang, C.; Wang, Y. MicroRNAs as potent regulators in nitrogen and phosphorus signaling transduction and their applications. Stress Biol. 2024, 4, 38. [Google Scholar] [CrossRef]
- Gong, Z.; Xiong, L.; Shi, H.; Yang, S.; Herrera-Estrella, L.R.; Xu, G.; Chao, D.Y.; Li, J.; Wang, P.Y.; Qin, F.; et al. Plant abiotic stress response and nutrient use efficiency. Sci. China Life Sci. 2020, 63, 635–674. [Google Scholar] [CrossRef]
- Li, C.; Nong, W.; Zhao, S.; Lin, X.; Xie, Y.; Cheung, M.Y.; Xiao, Z.; Wong, A.Y.P.; Chan, T.F.; Hui, J.H.L.; et al. Differential microRNA expression, microRNA arm switching, and microRNA: Long noncoding RNA interaction in response to salinity stress in soybean. BMC Genom. 2022, 23, 65. [Google Scholar] [CrossRef]
- Asefpour Vakilian, K. Determination of nitrogen deficiency-related microRNAs in plants using fluorescence quenching of graphene oxide nanosheets. Mol. Cell. Probes 2020, 52, 101576. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, J.; Zhang, N.; Wu, J.; Si, H. Roles of microRNAs in abiotic stress response and characteristics regulation of plant. Front. Plant Sci. 2022, 13, 919243. [Google Scholar] [CrossRef]
- Ghosh, S.; Adhikari, S.; Adhikari, A.; Hossain, Z. Contribution of plant miRNAome studies towards understanding heavy metal stress responses: Current status and future perspectives. Environ. Exp. Bot. 2022, 194, 104705. [Google Scholar] [CrossRef]
- Gao, Z.; Ma, C.; Zheng, C.; Yao, Y.; Du, Y. Advances in the regulation of plant salt-stress tolerance by miRNA. Mol. Biol. Rep. 2022, 49, 5041–5055. [Google Scholar] [CrossRef]
- Patel, P.; Yadav, K.; Ganapathi, T.R.; Penna, S. Plant miRNAome: Cross talk in abiotic stressful times. In Genetic Enhancement of Crops for Tolerance to Abiotic Stress: Mechanisms and Approaches; Rajpal, V.R., Sehgal, D., Kumar, A., Raina, S.N., Eds.; Springer: Cham, Switzerland, 2019; pp. 25–52. [Google Scholar]
- Chandra, S.; Roychoudhury, A. Penconazole, paclobutrazol, and triacontanol in overcoming environmental stress in plants. In Protective Chemical Agents in the Amelioration of Plant Abiotic Stress: Biochemical and Molecular Perspectives; Roychoudhury, A., Tripathi, D.K., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 510–534. [Google Scholar]
- Chen, L.H.; Cheng, Z.X.; Xu, M.; Yang, Z.J.; Yang, L.T. Effects of nitrogen deficiency on the metabolism of organic acids and amino acids in Oryza sativa. Plants 2022, 11, 2576. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Wang, F.; Wang, Y.; Lin, R.; Wang, Z.; Mao, C. Molecular mechanisms and genetic improvement of low-phosphorus tolerance in rice. Plant Cell Environ. 2023, 46, 1104–1119. [Google Scholar] [CrossRef] [PubMed]
- Talukder, M.S.H.; Sarkar, A.K. Nutrient deficiency diagnosis of rice crop by weighted average ensemble learning. Smart Agric. Technol. 2023, 4, 100155. [Google Scholar] [CrossRef]
- Sharma, R.K.; Cox, M.S.; Oglesby, C.; Dhillon, J.S. Revisiting the role of sulfur in crop production: A narrative review. J. Agric. Food Res. 2024, 15, 101013. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, D.; Cong, L.; Lu, X. Identification of microRNAs involved in crosstalk between nitrogen, phosphorus and potassium under multiple nutrient deficiency in sorghum. Crop J. 2021, 9, 465–475. [Google Scholar] [CrossRef]
- Lin, S.I.; Santi, C.; Jobet, E.; Lacut, E.; El Kholti, N.; Karlowski, W.M.; Echeverria, M. Complex regulation of two target genes encoding SPX-MFS proteins by rice miR827 in response to phosphate starvation. Plant Cell Physiol. 2010, 51, 2119–2131. [Google Scholar] [CrossRef]
- Zeng, J.; Ye, Z.; He, X.; Zhang, G. Identification of microRNAs and their targets responding to low-potassium stress in two barley genotypes differing in low-K tolerance. J. Plant Physiol. 2019, 234, 44–53. [Google Scholar] [CrossRef]
- Grewal, R.K.; Saraf, S.; Deb, A.; Kundu, S. Differentially expressed microRNAs link cellular physiology to phenotypic changes in rice under stress conditions. Plant Cell Physiol. 2018, 59, 2143–2154. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, N.; Sopory, S.K.; Sanan-Mishra, N. miRNAs and genes as molecular regulators of rice grain morphology and yield. Plant Physiol. Biochem. 2024, 207, 108363. [Google Scholar] [CrossRef]
- Yin, J.Q.; Zhao, R.C.; Morris, K.V. Profiling microRNA expression with microarrays. Trends Biotechnol. 2008, 26, 70–76. [Google Scholar] [CrossRef]
- Várallyay, E.; Burgyán, J.; Havelda, Z. MicroRNA detection by northern blotting using locked nucleic acid probes. Nat. Protoc. 2008, 3, 190–196. [Google Scholar] [CrossRef]
- Marabita, F.; De Candia, P.; Torri, A.; Tegner, J.; Abrignani, S.; Rossi, R.L. Normalization of circulating microRNA expression data obtained by quantitative real-time RT-PCR. Brief. Bioinform. 2016, 17, 204–212. [Google Scholar] [CrossRef]
- Turner, A.P. Biosensors: Sense and sensibility. Chem. Soc. Rev. 2013, 42, 3184–3196. [Google Scholar] [CrossRef] [PubMed]
- Mourya, D.T.; Yadav, P.D.; Mehla, R.; Barde, P.V.; Yergolkar, P.N.; Kumar, S.R.; Thakare, J.P.; Mishra, A.C. Diagnosis of Kyasanur forest disease by nested RT-PCR, real-time RT-PCR and IgM capture ELISA. J. Virol. Methods 2012, 186, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.N.; Mutharasan, R. Biosensor-based microRNA detection: Techniques, design, performance, and challenges. Analyst 2014, 139, 1576–1588. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.V.; Piro, B. Recent trends in application of nanomaterials for the development of electrochemical microRNA biosensors. Microchim. Acta 2021, 188, 128. [Google Scholar] [CrossRef]
- Dorosti, N.; Khatami, S.H.; Karami, N.; Taheri-Anganeh, M.; Mahhengam, N.; Rajabvand, N.; Asadi, P.; Movahedpour, A.; Ghasemi, H. MicroRNA biosensors for detection of gastrointestinal cancer. Clin. Chim. Acta 2023, 541, 117245. [Google Scholar] [CrossRef]
- Ma, C.; Zhang, H.H.; Wang, X. Machine learning for big data analytics in plants. Trends Plant Sci. 2014, 19, 798–808. [Google Scholar] [CrossRef]
- Yan, J.; Wang, X. Machine learning bridges omics sciences and plant breeding. Trends Plant Sci. 2023, 28, 199–210. [Google Scholar] [CrossRef]
- Sujatha, R.; Krishnan, S.; Chatterjee, J.M.; Gandomi, A.H. Advancing plant leaf disease detection integrating machine learning and deep learning. Sci. Rep. 2025, 15, 11552. [Google Scholar] [CrossRef]
- Eftekhari, M.; Ma, C.; Orlov, Y.L. Applications of artificial intelligence, machine learning, and deep learning in plant breeding. Front. Plant Sci. 2024, 15, 1420938. [Google Scholar] [CrossRef] [PubMed]
- Meher, P.K.; Begam, S.; Sahu, T.K.; Gupta, A.; Kumar, A.; Kumar, U.; Rao, A.R.; Singh, K.P.; Dhankher, O.P. ASRmiRNA: Abiotic stress-responsive miRNA prediction in plants by using machine learning algorithms with pseudo K-tuple nucleotide compositional features. Int. J. Mol. Sci. 2022, 23, 1612. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, U.K.; Meher, P.K.; Naha, S.; Rao, A.R.; Kumar, U.; Pal, S.; Gupta, A. ASmiR: A machine learning framework for prediction of abiotic stress–specific miRNAs in plants. Funct. Integr. Genom. 2023, 23, 92. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, P.; Asefpour Vakilian, K. Machine learning provides specific detection of salt and drought stresses in cucumber based on miRNA characteristics. Plant Methods 2023, 19, 123. [Google Scholar] [CrossRef]
- Asefpour Vakilian, K. Detecting abiotic stresses in rice plants using a smart optical biosensor based on gold nanoparticles. Iran. J. Biosyst. Eng. 2024, 55, 51–69. [Google Scholar]
- Asefpour Vakilian, K. Machine learning improves our knowledge about miRNA functions towards plant abiotic stresses. Sci. Rep. 2020, 10, 3041. [Google Scholar] [CrossRef]
- Hakimian, F.; Ghourchian, H. Ultrasensitive electrochemical biosensor for detection of microRNA-155 as a breast cancer risk factor. Anal. Chim. Acta 2020, 1136, 1–8. [Google Scholar] [CrossRef]
- Kim, K.; Lee, J.W.; Shin, K.S. Polyethylenimine-capped Ag nanoparticle film as a platform for detecting charged dye molecules by surface-enhanced Raman scattering and metal-enhanced fluorescence. ACS Appl. Mater. Interfaces 2012, 4, 5498–5504. [Google Scholar] [CrossRef]
- Asefpour Vakilian, K.; Massah, J. A portable nitrate biosensing device using electrochemistry and spectroscopy. IEEE Sens. J. 2018, 18, 3080–3089. [Google Scholar] [CrossRef]
- Shrivastava, A.; Gupta, V.B. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2011, 2, 21–25. [Google Scholar] [CrossRef]
- Davis, A.R.; Levi, A.; Kim, S.; King, S.R.; Hernandez, A. RNA extraction method from fruit tissue high in water and sugar. HortScience 2006, 41, 1292–1294. [Google Scholar] [CrossRef]
- Sun, X.; Liu, Y.; Li, J.; Zhu, J.; Chen, H.; Liu, X. Feature evaluation and selection with cooperative game theory. Pattern Recognit. 2012, 45, 2992–3002. [Google Scholar] [CrossRef]
- Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [Google Scholar] [CrossRef]
- Sarkar, C.O.; Kursun, O.; Gurgen, F. A feature selection method based on kernel canonical correlation analysis and the minimum redundancy–maximum relevance filter method. Expert Syst. Appl. 2012, 39, 3432–3437. [Google Scholar] [CrossRef]
- Schratz, P.; Muenchow, J.; Iturritxa, E.; Richter, J.; Brenning, A. Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data. Ecol. Modell. 2019, 406, 109–120. [Google Scholar] [CrossRef]
- Pannakkong, W.; Thiwa-Anont, K.; Singthong, K.; Parthanadee, P.; Buddhakulsomsiri, J. Hyperparameter tuning of machine learning algorithms using response surface methodology: A case study of ANN, SVM, and DBN. Math. Probl. Eng. 2022, 2022, 8513719. [Google Scholar] [CrossRef]
- Raji, I.D.; Bello-Salau, H.; Umoh, I.J.; Onumanyi, A.J.; Adegboye, M.A.; Salawudeen, A.T. Simple deterministic selection-based genetic algorithm for hyperparameter tuning of machine learning models. Appl. Sci. 2022, 12, 1186. [Google Scholar] [CrossRef]
- El-Hassani, F.Z.; Amri, M.; Joudar, N.E.; Haddouch, K. A new optimization model for MLP hyperparameter tuning: Modeling and resolution by real-coded genetic algorithm. Neural Process. Lett. 2024, 56, 105. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, X.; Cheng, Y.; Du, X.; Teotia, S.; Miao, C.; Sun, H.; Fan, G.; Tang, G.; Xue, H.; et al. The miR167-OsARF12 module regulates rice grain filling and grain size downstream of miR159. Plant Commun. 2023, 4, 100604. [Google Scholar] [CrossRef]
- Li, X.P.; Ma, X.C.; Wang, H.; Zhu, Y.; Liu, X.X.; Li, T.T.; Zheng, Y.P.; Zhao, J.Q.; Zhang, J.; Huang, Y.; et al. Osa-miR162a fine-tunes rice resistance to Magnaporthe oryzae and yield. Rice 2020, 13, 38. [Google Scholar] [CrossRef]
- Zhao, B.; Ge, L.; Liang, R.; Li, W.; Ruan, K.; Lin, H.; Jin, Y. Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol. Biol. 2009, 10, 29. [Google Scholar] [CrossRef]
- Yang, Z.; Hui, S.; Lv, Y.; Zhang, M.; Chen, D.; Tian, J.; Zhang, H.; Liu, H.; Cao, J.; Xie, W.; et al. miR395-regulated sulfate metabolism exploits pathogen sensitivity to sulfate to boost immunity in rice. Mol. Plant 2022, 15, 671–688. [Google Scholar] [CrossRef]
- Rudin, C.; Radin, J. Why are we using black box models in AI when we don’t need to? A lesson from an explainable AI competition. Harvard Data Sci. Rev. 2019, 1, 1–10. [Google Scholar] [CrossRef]
- Chandar, A.G.; Sivasankari, K.; Lakshmi, S.L.; Sugumaran, S.; Kannadhasan, S.; Balakumar, S. An innovative smart agriculture system utilizing a deep neural network and embedded system to enhance crop yield. Multidiscip. Sci. J. 2024, 6, e2024063. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, H. Kernel parameter selection for support vector machine classification. J. Algorithms Comput. Technol. 2014, 8, 163–177. [Google Scholar] [CrossRef]
- Samadi, S.M.; Asefpour Vakilian, K.; Javidan, S.M. Combining miRNA concentrations and optimized machine-learning techniques: An effort for the tomato storage quality assessment in the agriculture 4.0 framework. J. Agric. Food Res. 2025, 19, 101605. [Google Scholar] [CrossRef]
- Bajpai, P.; Kumar, M. Genetic algorithm–An approach to solve global optimization problems. Indian J. Comput. Sci. Eng. 2010, 1, 199–206. [Google Scholar]
- Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021, 80, 8091–8126. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, P.H.; Kan, C.C.; Wu, H.Y.; Yang, H.C.; Hsieh, M.H. Early molecular events associated with nitrogen deficiency in rice seedling roots. Sci. Rep. 2018, 8, 12207. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Chen, L.; Qu, H.; Lian, J.; Liu, W.; Hu, Y.; Xu, G. Alteration of nutrient allocation and transporter genes expression in rice under N, P, K, and Mg deficiencies. Acta Physiol. Plant. 2012, 34, 939–946. [Google Scholar] [CrossRef]
- Takehisa, H.; Sato, Y.; Antonio, B.; Nagamura, Y. Coexpression network analysis of macronutrient deficiency response genes in rice. Rice 2015, 8, 24. [Google Scholar] [CrossRef]
Target microRNA | Sequence of Target microRNA and Its Thiolated Probe |
---|---|
miRNA156 | 5′-GCUCACUCUCUAUCUGUCAGC-3′ 5′-AAAAAAAAAAGCTGACAGATAGAGAGTGAGCTTTTTTTTT-HS-3′ |
miRNA159 | 5′-AUUGGAUUGAAGGGAGCUCCG-3′ 5′-AAAAAAAAAACGGAGCTCCCTTCAATCCAATTTTTTTTTT-HS-3′ |
miRNA162 | 5′-UCGAUAAACCUCUGCAUCCAG-3′ 5′-AAAAAAAAAACTGGATGCAGAGGTTTATCGATTTTTTTTT-HS-3′ |
miRNA164 | 5′-UGGAGAAGCAGGGCACGUGCA-3′ 5′-AAAAAAAAAATGCACGTGCCCTGCTTCTCCATTTTTTTTT-HS-3′ |
miRNA167 | 5′-AGGUCAUGCUGUAGUUUCAUC-3′ 5′-AAAAAAAAAAGATGAAACTACAGCATGACCTTTTTTTTTT-HS-3′ |
miRNA169 | 5′-UAGCCAAGGAUGACUUGCCUA-3′ 5′-AAAAAAAAAATAGGCAAGTCATCCTTGGCTATTTTTTTTT-HS-3′ |
miRNA171 | 5′-UGAUUGAGCCGCGCCAAUAUC-3′ 5′-AAAAAAAAAAGATATTGGCGCGGCTCAATCATTTTTTTTT-HS-3′ |
miRNA172 | 5′-AGAAUCUUGAUGAUGCUGCAU-3′ 5′-AAAAAAAAAAATGCAGCATCATCAAGATTCTTTTTTTTTT-HS-3′ |
miRNA319 | 5′-AGCUGCCGAAUCAUCCAUUCA-3′ 5′-AAAAAAAAAATGAATGGATGATTCGGCAGCTTTTTTTTTT-HS-3′ |
miRNA395 | 5′-GUGAAGUGUUUGGGGGAACUC-3′ 5′-AAAAAAAAAAGAGTTCCCCCAAACACTTCACTTTTTTTTT-HS-3′ |
miRNA399 | 5′-UGCCAAAGGAGAAUUGCCCUG-3′ 5′-AAAAAAAAAACAGGGCAATTCTCCTTTGGCATTTTTTTTT-HS-3′ |
miRNA444 | 5′-GCUAGAGGUGGCAACUGCAUA-3′ 5′-AAAAAAAAAATATGCAGTTGCCACCTCTAGCTTTTTTTTT-HS-3′ |
miRNA528 | 5′-UGGAAGGGGCAUGCAGAGGAG-3′ 5′-AAAAAAAAAACTCCTCTGCATGCCCCTTCCATTTTTTTTT-HS-3′ |
miRNA827 | 5′-UUAGAUGACCAUCAGCAAACA-3′ 5′-AAAAAAAAAATGTTTGCTGATGGTCATCTAATTTTTTTTT-HS-3′ |
Machine | Type of Nutrient Deficiency | Predicting the Type of Stress | Predicting the Severity of Stress | |||
---|---|---|---|---|---|---|
Accuracy | Precision | Recall | MSE | R2 | ||
Support vector machine | N | 0.72 | 0.91 | 0.70 | 0.134 | 0.56 |
P | 0.64 | 0.87 | 0.61 | 0.095 | 0.63 | |
K | 0.68 | 0.91 | 0.64 | 0.161 | 0.51 | |
S | 0.58 | 0.81 | 0.57 | 0.090 | 0.72 | |
Mean | 0.65 | 0.88 | 0.63 | 0.120 | 0.61 | |
Random forest | N | 0.91 | 0.96 | 0.91 | 0.008 | 0.92 |
P | 0.87 | 0.95 | 0.88 | 0.009 | 0.91 | |
K | 0.86 | 0.92 | 0.89 | 0.011 | 0.93 | |
S | 0.80 | 0.93 | 0.81 | 0.011 | 0.92 | |
Mean | 0.86 | 0.94 | 0.87 | 0.010 | 0.92 | |
Artificial neural network | N | 0.76 | 0.93 | 0.76 | 0.043 | 0.85 |
P | 0.70 | 0.93 | 0.65 | 0.072 | 0.82 | |
K | 0.77 | 0.91 | 0.78 | 0.035 | 0.89 | |
S | 0.70 | 0.87 | 0.71 | 0.044 | 0.83 | |
Mean | 0.73 | 0.91 | 0.72 | 0.049 | 0.848 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Asefpour Vakilian, K. Detecting the Type and Severity of Mineral Nutrient Deficiency in Rice Plants Based on an Intelligent microRNA Biosensing Platform. Sensors 2025, 25, 5189. https://doi.org/10.3390/s25165189
Li Z, Asefpour Vakilian K. Detecting the Type and Severity of Mineral Nutrient Deficiency in Rice Plants Based on an Intelligent microRNA Biosensing Platform. Sensors. 2025; 25(16):5189. https://doi.org/10.3390/s25165189
Chicago/Turabian StyleLi, Zhongxu, and Keyvan Asefpour Vakilian. 2025. "Detecting the Type and Severity of Mineral Nutrient Deficiency in Rice Plants Based on an Intelligent microRNA Biosensing Platform" Sensors 25, no. 16: 5189. https://doi.org/10.3390/s25165189
APA StyleLi, Z., & Asefpour Vakilian, K. (2025). Detecting the Type and Severity of Mineral Nutrient Deficiency in Rice Plants Based on an Intelligent microRNA Biosensing Platform. Sensors, 25(16), 5189. https://doi.org/10.3390/s25165189