Feasibility of Wearable Devices for Motivating Post-Stroke Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Assessment of Patients
- Fugl–Meyer Assessment–Upper Extremity (FMA-UE);
- Motivation scale (MORE);
- Functional Independence Measure (FIM).
2.3.1. Fugl–Meyer Assessment Upper Extremity (FMA-UE)
2.3.2. Motivation Scale (MORE)
2.3.3. Functional Independence Measure (FIM)
2.4. Przypominajka Device and Intervention
3. Results
Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, J.; Thayabaranathan, T.; Donnan, G.A.; Howard, G.; Howard, V.J.; Rothwell, P.M.; Feigin, V.; Norrving, B.; Owolabi, M.; Pandian, J.; et al. Global Stroke Statistics 2019. Int. J. Stroke 2020, 15, 819–838. [Google Scholar] [CrossRef]
- Bertani, R.; Melegari, C.; De Cola, M.C.; Bramanti, A.; Bramanti, P.; Calabro, R.S. Effects of robot-assisted upper limb rehabilitation in stroke patients: A systematic review with meta-analysis. Neurol. Sci. 2017, 38, 1561–1569. [Google Scholar] [CrossRef]
- Singh, R.J.; Chen, S.; Ganesh, A.; Hill, M.D. Long-term neurological, vascular, and mortality outcomes after stroke. Int. J. Stroke 2018, 13, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Dembovski, A.; Amitai, Y.; Levy-Tzedek, S. A Socially Assistive Robot for Stroke Patients: Acceptance, Needs, and Concerns of Patients and Informal Caregivers. Front. Rehabil. Sci. 2021, 2, 793233. [Google Scholar] [CrossRef] [PubMed]
- Franceschini, M.; Ceravolo, M.G.; Agosti, M.; Cavallini, P.; Bonassi, S.; Dall’Armi, V.; Massucci, M.; Schifini, F.; Sale, P. Clinical relevance of action observation in upper-limb stroke rehabilitation: A possible role in recovery of functional dexterity. A randomized clinical trial. Neurorehabilit. Neural Repair 2012, 26, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Yin, P.B.; Kitazawa, S. Long-lasting aftereffects of prism adaptation in the monkey. Exp. Brain Res. 2001, 141, 250–253. [Google Scholar] [CrossRef]
- Kwakkel, G.; Kollen, B.; Lindeman, E. Understanding the pattern of functional recovery after stroke: Facts and theories. Restor. Neurol. Neurosci. 2004, 22, 281–299. [Google Scholar] [CrossRef]
- Cauraugh, J.H.; Kim, S.B. Chronic stroke motor recovery: Duration of active neuromuscular stimulation. J. Neurol. Sci. 2003, 215, 13–19. [Google Scholar] [CrossRef]
- Wist, S.; Clivaz, J.; Sattelmayer, M. Muscle strengthening for hemiparesis after stroke: A meta-analysis. Ann. Phys. Rehabil. Med. 2016, 59, 114–124. [Google Scholar] [CrossRef]
- Bohannon, R.W. Muscle strength and muscle training after stroke. J. Rehabil. Med. 2007, 39, 14–20. [Google Scholar] [CrossRef]
- Rabelo, M.; Nunes, G.S.; da Costa Amante, N.M.; de Noronha, M.; Fachin-Martins, E. Reliability of muscle strength assessment in chronic post-stroke hemiparesis: A systematic review and meta-analysis. Top. Stroke Rehabil. 2016, 23, 26–36. [Google Scholar] [CrossRef]
- Mehta, S.; Pereira, S.; Viana, R.; Mays, R.; McIntyre, A.; Janzen, S.; Teasell, R.W. Resistance training for gait speed and total distance walked during the chronic stage of stroke: A meta-analysis. Top. Stroke Rehabil. 2012, 19, 471–478. [Google Scholar] [CrossRef]
- Owen, M.; Ingo, C.; Dewald, J.P. Upper extremity motor impairments and microstructural changes in bulbospinal pathways in chronic hemiparetic stroke. Front. Neurol. 2017, 8, 257. [Google Scholar] [CrossRef]
- de-la-Torre, R.; Ona, E.D.; Balaguer, C.; Jardon, A. Robot-Aided Systems for Improving the Assessment of Upper Limb Spasticity: A Systematic Review. Sensors 2020, 20, 5251. [Google Scholar] [CrossRef] [PubMed]
- Sheng, B.; Zhang, Y.; Meng, W.; Deng, C.; Xie, S. Bilateral robots for upper-limb stroke rehabilitation: State of the art and future prospects. Med. Eng. Phys. 2016, 38, 587–606. [Google Scholar] [CrossRef] [PubMed]
- Sale, P.; Franceschini, M.; Mazzoleni, S.; Palma, E.; Agosti, M.; Posteraro, F. Effects of upper limb robot-assisted therapy on motor recovery in subacute stroke patients. J. Neuroeng. Rehabil. 2014, 11, 104. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Tyson, S.; Weightman, A. Professionals’ Views and Experiences of Using Rehabilitation Robotics with Stroke Survivors: A Mixed Methods Survey. Front. Med. Technol. 2021, 3, 780090. [Google Scholar] [CrossRef]
- Maille, B.; Wilkin, M.; Million, M.; Resseguier, N.; Franceschi, F.; Koutbi-Franceschi, L.; Hourdain, J.; Martinez, E.; Zabern, M.; Gardella, C.; et al. Smartwatch Electrocardiogram and Artificial Intelligence for Assessing Cardiac-Rhythm Safety of Drug Therapy in the COVID-19 Pandemic. The QT-logs study. Int. J. Cardiol. 2021, 331, 333–339. [Google Scholar] [CrossRef]
- Martinato, M.; Lorenzoni, G.; Zanchi, T.; Bergamin, A.; Buratin, A.; Azzolina, D.; Gregori, D. Usability and Accuracy of a Smartwatch for the Assessment of Physical Activity in the Elderly Population: Observational Study. JMIR mHealth uHealth 2021, 9, e20966. [Google Scholar] [CrossRef]
- Fan, J.; Liu, Q.; Dai, H.; Zhou, D.; Guo, Y.; Xu, J.; Wang, L.; Hu, P.; Jiang, J.; Lin, X.; et al. Daily Physical Activity Measured by Wearable Smartwatch for Patients Undergoing Transcatheter Aortic Valve Replacement: Insights from the SMART TAVR Study. Circ. Cardiovasc. Qual. Outcomes 2024, 17, e010066. [Google Scholar] [CrossRef]
- Burns, S.P.; Terblanche, M.; Perea, J.; Lillard, H.; DeLaPena, C.; Grinage, N.; MacKinen, A.; Cox, E.E. mHealth Intervention Applications for Adults Living with the Effects of Stroke: A Scoping Review. Arch. Rehabil. Res. Clin. Transl. 2021, 3, 100095. [Google Scholar] [CrossRef] [PubMed]
- Torriani-Pasin, C.; Demers, M.; Polese, J.C.; Bishop, L.; Wade, E.; Hempel, S.; Winstein, C. mHealth technologies used to capture walking and arm use behavior in adult stroke survivors: A scoping review beyond measurement properties. Disabil. Rehabil. 2022, 44, 6094–6106. [Google Scholar] [CrossRef] [PubMed]
- Costa, P.H.V.; de Jesus, T.P.D.; Winstein, C.; Torriani-Pasin, C.; Polese, J.C. An investigation into the validity and reliability of mHealth devices for counting steps in chronic stroke survivors. Clin. Rehabil. 2020, 34, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Alanzi, T.; Rehman, S.U.; Khan, M.A.; Istepanian, R.S.H. The evolution and mapping trends of mobile health (m-Health): A bibliometric analysis (1997–2023). nHealth 2024, 10, 23. [Google Scholar] [CrossRef]
- Hamine, S.; Gerth-Guyette, E.; Faulx, D.; Green, B.B.; Ginsburg, A.S. Impact of mHealth chronic disease management on treatment adherence and patient outcomes: A systematic review. J. Med. Internet Res. 2015, 17, e52. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guideline: Recommendations on Digital Interventions for Health System Strengthening: Web Supplement 2: Summary of Findings and GRADE Tables; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Adcock, A.K.; Haggerty, T.; Crawford, A.; Espinosa, C. mHealth impact on secondary stroke prevention: A scoping review of randomized controlled trials among stroke survivors between 2010–2020. mHealth 2022, 8, 19. [Google Scholar] [CrossRef]
- Khirasaria, R.; Singh, V.; Batta, A. Exploring digital therapeutics: The next paradigm of modern health-care industry. Perspect. Clin. Res. 2020, 11, 54–58. [Google Scholar] [CrossRef]
- Rakhshan, M.; Najafi, H.; Valizadeh, G.A. Lifestyle of Patients with Atrial Fibrillation Following Self-Management Interventions: A Randomized Clinical Trial. J. Caring Sci. 2019, 8, 83–88. [Google Scholar] [CrossRef]
- Whitehead, L.; Seaton, P. The Effectiveness of Self-Management Mobile Phone and Tablet Apps in Long-term Condition Management: A Systematic Review. J. Med. Internet Res. 2016, 18, e97. [Google Scholar] [CrossRef]
- Boukhennoufa, I.; Zhai, X.; Utti, V.; Jackson, J.; McDonald-Maier, K.D. Wearable sensors and machine learning in post-stroke rehabilitation assessment: A systematic review. Biomed. Signal Process. Control 2022, 71, 103197. [Google Scholar] [CrossRef]
- Zubrycki, I.; Prączko-Pawlak, E.; Dominik, I. Sensing System for Plegic or Paretic Hands Self-Training Motivation. Sensors 2022, 22, 2414. [Google Scholar] [CrossRef]
- Nijland, R.; Kwakkel, G.; Bakers, J.; van Wegen, E. Constraint-induced movement therapy for the upper paretic limb in acute or sub-acute stroke: A systematic review. Int. J. Stroke 2011, 6, 425–433. [Google Scholar] [CrossRef]
- Nijland, R.H.; van Wegen, E.E.; Harmeling-van der Wel, B.C.; Kwakkel, G. Presence of finger extension and shoulder abduction within 72 hours after stroke predicts functional recovery: Early prediction of functional outcome after stroke: The EPOS cohort study. Stroke 2010, 41, 745–750. [Google Scholar] [CrossRef] [PubMed]
- Lundquist, C.B.; Maribo, T. The Fugl–Meyer assessment of the upper extremity: Reliability, responsiveness and validity of the Danish version. Disabil. Rehabil. 2017, 39, 934–939. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Otaka, Y.; Kitamura, S.; Ushizawa, K.; Kumagai, M.; Kurihara, Y.; Yaeda, J.; Osu, R. Development and validation of new evaluation scale for measuring stroke patients’ motivation for rehabilitation in rehabilitation wards. PLoS ONE 2022, 17, e0265214. [Google Scholar] [CrossRef] [PubMed]
- Maeda, N.; Urabe, Y.; Murakami, M.; Itotani, K.; Kato, J. Discriminant analysis for predictor of falls in stroke patients by using the Berg Balance Scale. Singap. Med. J. 2015, 56, 280. [Google Scholar] [CrossRef]
- Murphy, T.H.; Corbett, D. Plasticity during stroke recovery: From synapse to behaviour. Nat. Rev. Neurosci. 2009, 10, 861–872. [Google Scholar] [CrossRef]
- Woldag, H.; Hummelsheim, H. Evidence-based physiotherapeutic concepts for improving arm and hand function in stroke patients: A review. J. Neurol. 2002, 249, 518–528. [Google Scholar] [CrossRef]
- Chung, B.P.H.; Chiang, W.K.H.; Lau, H.; Lau, T.F.O.; Lai, C.W.K.; Sit, C.S.Y.; Chan, K.Y.; Yeung, C.Y.; Lo, T.M.; Hui, E. Pilot study on comparisons between the effectiveness of mobile video-guided and paper-based home exercise programs on improving exercise adherence, self-efficacy for exercise and functional outcomes of patients with stroke with 3-month follow-up: A single-blind randomized controlled trial. Hong Kong Physiother. J. 2020, 40, 63–73. [Google Scholar]
- Kim, D.-W.; Park, J.E.; Kim, M.-J.; Byun, S.H.; Jung, C.I.; Jeong, H.M.; Woo, S.R.; Lee, K.H.; Lee, M.H.; Jung, J.-W. Automatic assessment of upper extremity function and mobile application for self-administered stroke rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 652–661. [Google Scholar] [CrossRef]
- Ballard, K.J.; Etter, N.M.; Shen, S.; Monroe, P.; Tien Tan, C. Feasibility of automatic speech recognition for providing feedback during tablet-based treatment for apraxia of speech plus aphasia. Am. J. Speech-Lang. Pathol. 2019, 28, 818–834. [Google Scholar] [CrossRef] [PubMed]
- Seifert, A. The digital exclusion of older adults during the COVID-19 pandemic. J. Gerontol. Soc. Work 2020, 63, 674–676. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Yao, Y.; Jin, Y. Digital exclusion and functional dependence in older people: Findings from five longitudinal cohort studies. eClinicalMedicine 2022, 54, 101708. [Google Scholar] [CrossRef] [PubMed]
- Hunsaker, A.; Hargittai, E. A review of Internet use among older adults. New Media Soc. 2018, 20, 3937–3954. [Google Scholar] [CrossRef]
- Eurostat. Individuals’ Level of Digital Skills (From 2021 Onwards). 2024. Available online: https://ec.europa.eu/eurostat/databrowser/view/ISOC_SK_DSKL_I21/default/table (accessed on 18 August 2025).
- Nakagomi, A.; Shiba, K.; Kawachi, I.; Ide, K.; Nagamine, Y.; Kondo, N.; Hanazato, M.; Kondo, K. Internet use and subsequent health and well-being in older adults: An outcome-wide analysis. Comput. Hum. Behav. 2022, 130, 107156. [Google Scholar] [CrossRef]
- Xavier, A.J.; d’Orsi, E.; de Oliveira, C.M.; Orrell, M.; Demakakos, P.; Biddulph, J.P.; Marmot, M.G. English Longitudinal Study of Aging: Can Internet/E-mail use reduce cognitive decline? J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2014, 69, 1117–1121. [Google Scholar] [CrossRef]
- Choi, N.G.; DiNitto, D.M. Internet use among older adults: Association with health needs, psychological capital, and social capital. J. Med. Internet Res. 2013, 15, e2333. [Google Scholar] [CrossRef]
- Greer, B.; Robotham, D.; Simblett, S.; Curtis, H.; Griffiths, H.; Wykes, T. Digital exclusion among mental health service users: Qualitative investigation. J. Med. Internet Res. 2019, 21, e11696. [Google Scholar] [CrossRef]
- Zapletal, A.; Wells, T.; Russell, E.; Skinner, M.W. On the triple exclusion of older adults during COVID-19: Technology, digital literacy and social isolation. Soc. Sci. Humanit. Open 2023, 8, 100511. [Google Scholar] [CrossRef]
- Carmichael, S.T. The 3 Rs of stroke biology: Radial, relayed, and regenerative. Neurotherapeutics 2016, 13, 348–359. [Google Scholar] [CrossRef]
- Bernardo-Castro, S.; Sousa, J.A.; Brás, A.; Cecília, C.; Rodrigues, B.; Almendra, L.; Machado, C.; Santo, G.; Silva, F.; Ferreira, L. Pathophysiology of blood–brain barrier permeability throughout the different stages of ischemic stroke and its implication on hemorrhagic transformation and recovery. Front. Neurol. 2020, 11, 594672. [Google Scholar] [CrossRef] [PubMed]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2019, 50, e344–e418. [Google Scholar] [PubMed]
- Cauraugh, J.H.; Kim, S.-B.; Summers, J.J. Chronic stroke longitudinal motor improvements: Cumulative learning evidence found in the upper extremity. Cerebrovasc. Dis. 2008, 25, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Peng, R.H.-T.; He, D.; James, S.A.; Williamson, J.N.; Skadden, C.; Jain, S.; Hassaneen, W.; Miranpuri, A.; Kaur, A.; Sarol, J.N. Determining the effects of targeted high-definition transcranial direct current stimulation on reducing post-stroke upper limb motor impairments—A randomized cross-over study. Trials 2024, 25, 34. [Google Scholar] [CrossRef]
- Kinoshita, T.; Yoshikawa, T.; Nishimura, Y.; Kamijo, Y.-I.; Arakawa, H.; Nakamura, T.; Hashizaki, T.; Hoekstra, S.P.; Tajima, F. Mobilization within 24 hours of new-onset stroke enhances the rate of home discharge at 6-months follow-up: A prospective cohort study. Int. J. Neurosci. 2021, 131, 1097–1106. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Chou, L.-W.; Hsieh, Y.-L. Proprioceptive neuromuscular facilitation-based physical therapy on the improvement of balance and gait in patients with chronic stroke: A systematic review and meta-analysis. Life 2022, 12, 882. [Google Scholar] [CrossRef]
- Chang, W.H.; Kim, Y.-H. Robot-assisted therapy in stroke rehabilitation. J. Stroke 2013, 15, 174. [Google Scholar] [CrossRef]
- Cho, K.H.; Hong, M.-R.; Song, W.-K. Upper limb robotic rehabilitation for chronic stroke survivors: A single-group preliminary study. J. Phys. Ther. Sci. 2018, 30, 580–583. [Google Scholar] [CrossRef]
- Devittori, G.; Ranzani, R.; Dinacci, D.; Romiti, D.; Califfi, A.; Petrillo, C.; Rossi, P.; Gassert, R.; Lambercy, O. Automatic and personalized adaptation of therapy parameters for unsupervised robot-assisted rehabilitation: A pilot evaluation. In Proceedings of the 2022 International Conference on Rehabilitation Robotics (ICORR), Rotterdam, The Netherlands, 25–29 July 2022; pp. 1–6. [Google Scholar]
- Toh, F.M.; Lam, W.W.; Gonzalez, P.C.; Fong, K.N. ‘Smart reminder’: A feasibility pilot study on the effects of a wearable device treatment on the hemiplegic upper limb in persons with stroke. J. Telemed. Telecare 2024, 31, 796–806. [Google Scholar] [CrossRef]
- Han, S.; Wang, H.; Yu, H. Human–robot interaction evaluation-based AAN control for upper limb rehabilitation robots driven by series elastic actuators. IEEE Trans. Robot. 2023, 39, 3437–3451. [Google Scholar] [CrossRef]
- Li, Z.; Su, C.-Y.; Wang, L.; Chen, Z.; Chai, T. Nonlinear disturbance observer-based control design for a robotic exoskeleton incorporating fuzzy approximation. IEEE Trans. Ind. Electron. 2015, 62, 5763–5775. [Google Scholar] [CrossRef]
- Chae, S.H.; Kim, Y.; Lee, K.-S.; Park, H.-S. Development and clinical evaluation of a web-based upper limb home rehabilitation system using a smartwatch and machine learning model for chronic stroke survivors: Prospective comparative study. JMIR mHealth uHealth 2020, 8, e17216. [Google Scholar] [CrossRef] [PubMed]
- Nathan, D.E.; Johnson, M.J. Design of a grasp assistive glove for ADL-focused, robotic assisted therapy after stroke. In Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics, Noordwijk, The Netherlands, 13–15 June 2007; pp. 943–950. [Google Scholar]
- Maceira-Elvira, P.; Popa, T.; Schmid, A.C.; Hummel, F.C. Wearable technology in stroke rehabilitation: Towards improved diagnosis and treatment of upper-limb motor impairment. J. Neuroeng. Rehabil. 2019, 16, 142. [Google Scholar] [CrossRef] [PubMed]
- Cheong, M.J.; Kang, Y.; Kang, H.W. Psychosocial factors related to stroke patients’ rehabilitation motivation: A scoping review and Meta-Analysis focused on South Korea. Healthcare 2021, 9, 1211. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.-J.; Kwon, S.; Youn, S.-C. The convergent influence of perceived stress and the empowerment on rehabilitation motive of stroke patients. J. Digit. Converg. 2016, 14, 291–303. [Google Scholar] [CrossRef]
- Cheong, M.J.; Jeon, B.; Noh, S.E. A protocol for systematic review and meta-analysis on psychosocial factors related to rehabilitation motivation of stroke patients. Medicine 2020, 99, e23727. [Google Scholar] [CrossRef]
- Gladstone, D.J.; Danells, C.J.; Black, S.E. The fugl-meyer assessment of motor recovery after stroke: A critical review of its measurement properties. Neurorehabilit. Neural Repair 2002, 16, 232–240. [Google Scholar] [CrossRef]
- Beninato, M.; Gill-Body, K.M.; Salles, S.; Stark, P.C.; Black-Schaffer, R.M.; Stein, J. Determination of the minimal clinically important difference in the FIM instrument in patients with stroke. Arch. Phys. Med. Rehabil. 2006, 87, 32–39. [Google Scholar] [CrossRef]
- Page, P. Beyond statistical significance: Clinical interpretation of rehabilitation research literature. Int. J. Sports Phys. Ther. 2014, 9, 726–736. [Google Scholar]
- Sriram, V.M.; Gururaj, G.; Hyder, A.A. Public–private implementation of integrated emergency response services: Case study of GVK Emergency Management and Research Institute in Karnataka, India. Surgery 2017, 162, S63–S76. [Google Scholar] [CrossRef]
- Xuefang, L.; Guihua, W.; Fengru, M. The effect of early cognitive training and rehabilitation for patients with cognitive dysfunction in stroke. Int. J. Methods Psychiatr. Res. 2021, 30, e1882. [Google Scholar] [CrossRef]
- Hussain, S.; Jamwal, P.K.; Vliet, P.V.; Brown, N.A. Robot assisted ankle neuro-rehabilitation: State of the art and future challenges. Expert Rev. Neurother. 2021, 21, 111–121. [Google Scholar] [CrossRef]
Scale | Shapiro–Wilk p (Exp) (a) | Shapiro–Wilk p (Ctrl) (a) | Levene p (b) | Student’s t-Test p (c) | Welch’s t-Test p (d) | Cohen’s d (e) |
---|---|---|---|---|---|---|
MORE | 0.437 | 0.397 | 0.519 | 0.160 | — | 0.74 |
FIM | 0.004 | <0.001 | 0.436 | 0.515 | — | 0.34 |
FMA-UE | 0.821 | 0.177 | 0.0058 | 0.657 | 0.660 | 0.23 |
Scale | Group | n | Mean Δ | SD Δ | t (n − 1) | p-Value | Cohen’s d (f) |
---|---|---|---|---|---|---|---|
MORE | Experimental | 8 | 2.25 | 4.10 | −1.55 | 0.164 | 0.55 |
MORE | Control | 8 | −1.12 | 4.94 | 0.64 | 0.540 | −0.23 |
FIM | Experimental | 8 | 3.00 | 4.66 | −1.82 | 0.111 | 0.64 |
FIM | Control | 8 | 1.50 | 4.24 | −1.00 | 0.351 | 0.35 |
FMA-UE | Experimental | 8 | 9.38 | 9.90 | −2.68 | 0.0316 | 0.95 |
FMA-UE | Control | 8 | 5.38 | 22.88 | −0.66 | 0.528 | 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marek, K.; Górski, J.; Karolczyk, P.; Redlicka, J.; Zubrycki, I.; Miller, E. Feasibility of Wearable Devices for Motivating Post-Stroke Patients. Sensors 2025, 25, 5204. https://doi.org/10.3390/s25165204
Marek K, Górski J, Karolczyk P, Redlicka J, Zubrycki I, Miller E. Feasibility of Wearable Devices for Motivating Post-Stroke Patients. Sensors. 2025; 25(16):5204. https://doi.org/10.3390/s25165204
Chicago/Turabian StyleMarek, Klaudia, Jan Górski, Piotr Karolczyk, Justyna Redlicka, Igor Zubrycki, and Elżbieta Miller. 2025. "Feasibility of Wearable Devices for Motivating Post-Stroke Patients" Sensors 25, no. 16: 5204. https://doi.org/10.3390/s25165204
APA StyleMarek, K., Górski, J., Karolczyk, P., Redlicka, J., Zubrycki, I., & Miller, E. (2025). Feasibility of Wearable Devices for Motivating Post-Stroke Patients. Sensors, 25(16), 5204. https://doi.org/10.3390/s25165204