Recent Advances in Portable Dry Electrode EEG: Architecture and Applications in Brain-Computer Interfaces
Abstract
1. Introduction
- We systematically investigate the latest advancements in dry EEG hardware, with a focus on its architectural innovations and material developments. This enables researchers to draw insights from alternative hardware designs, facilitating the optimization of dry electrode performance at the front end of signal extraction.
- We focus on organizing and presenting the latest research progress of dry electrode EEG systems across various BCI application fields, systematically arranging the existing studies in terms of both timeline and logical progression. This approach not only significantly enhances understanding of the current status and development trends for readers but also assists researchers in selecting appropriate algorithms based on specific situations and diverse needs.
- We critically discuss current challenges and unresolved issues within the BCI domain, offering insights and outlining promising future research directions to guide subsequent studies.
2. Classification of Dry Electrodes
2.1. MEMS Dry Electrodes
2.2. Dry Non-Contact Electrodes
2.3. Dry Contact Electrodes
3. Key Applications
3.1. Emotion Recognition
Ref. | Year | Device | Channels | Model | Category | Performance |
---|---|---|---|---|---|---|
[85] | 2019 | Self-made | 3 | Model stacking (GBDT+RF+SVM) | Happy, fear, peace, disgust | subject-independent: 81.30% |
[57] | 2020 | Self-made | 4 | CNN | Negative, positive | subject-dependent: 81.32% |
[86] | 2020 | IMEC | 8 | RF | Valence, arousal | subject-dependent: Valence: 0.71 and arousal: 0.62 |
[82] | 2020 | IMEC | 8 | Deep ConvNet | Positive, negative | subject-dependent: 71.7 ± 15.5% (dry) |
+ LSTM | subject-dependent: 70.3 ± 22.5% (wet) | |||||
[84] | 2021 | Self-made | 8 | SVM/MLP/1D-CNN | Negative, neutral, positive | subject-dependent: 85.81% subject-independent: 78.52% |
[87] | 2021 | Helmate8 | 8 | KNN/SVM/ANN/ LDA/RF/LR | Valence | subject-dependent: 96.1% |
[88] | 2022 | Muse2016 | 4 | KNN/SVM/NN/ NB/RF/GBM | Happy, scared, calm, and bored | subject-independent: 85.01% |
[89] | 2023 | Helmate8 | 8 | SVM/KNN/ANN | Valence, arousal | Valence: 76.76 ± 3.83% Arousal: 77.86 ± 7.88% |
[90] | 2023 | DSI-24 | 24 | CD-EmotionNet | Disgust, fear, anger, sad, neutral, amusement, tenderness, and happiness | subject-dependent: 64.47 ± 10.17% |
[83] | 2024 | Self-made | 3 | FT2 + DCGN | Negative, positive | subject-independent: 99% |
[91] | 2025 | DSI-24 | 24 | CDRC | Happy, fear, neutral, angry, and sad | subject-dependent: 60.05 ± 9.35% subject-independent: 58.18 ± 15.57% |
3.2. Fatigue and Drowsiness Detection
3.3. Motor Imagery
Ref. | Year | Device | Channels | Model | Category | Performance |
---|---|---|---|---|---|---|
[113] | 2019 | Emotiv Epoc | 14 | SBCSP-SBFS+NBPW | 3 | subject-dependent: 60.61% |
[107] | 2019 | OpenBCI | 8 | DFBCSP+4 CNNs | 5 | subject-dependent: 76.62% |
[114] | 2020 | EEG-HeroTM | 11 | sLDA | 3 | subject-dependent: 56.4 ± 8% (dry) subject-dependent: 62.3 ± 8.2% (wet) |
[115] | 2020 | Muse | 4 | CNN+LSTM | 2 | subject-dependent: 96.50% |
[109] | 2020 | Enobio | 16 | CNN | 2 & 4 | subject-dependent: 87.37 ± 1.68% subject-dependent: 81.90 ± 4.45% |
[116] | 2021 | ActiCap Xpress Twist | 31 | MD-CNN | 3 | subject-independent: 58.44% (dry) subject-independent: 58.66% (wet) |
[110] | 2021 | Enobio | 32 | RTS+SVM | 2 | subject-dependent: 70% |
[117] | 2022 | CGX system | 30 | 2-Conv-FBCNet | 2 | Healthy: 61.0% Stroke: 59.4% |
[108] | 2023 | Self-made | 3 | LGBM+MVO | 2 | subject-dependent: 90.37% |
[118] | 2023 | OpenBCI | 14 | SVM | 2 | 73.50% |
[111] | 2024 | g.tec Unicorn Hybrid Black | 8 | CNN+LSTM | 4 | Offline: 40.9 ± 16.9% Online: 35.9 ± 10.4% |
[119] | 2024 | CGX system | 32 | SOTL | 4 | subject-independent: Stroke: 51.2 ± 0.17% |
[120] | 2025 | CGX system | 32 | TSDA | 4 | subject-dependent: Stroke: 51.7% |
[112] | 2025 | OpenBCI | 16 | Transformer | 2 | subject-dependent: 85.3% |
[121] | 2025 | BlueBCI | 8 | Transfer learning-assisted GCN | 2 | Cross-validation: 71.19% Cross-session: 69.03% |
3.4. Steady-State Visual Evoked Potential
Ref. | Year | Device | Channels | Model | Category | Performance |
---|---|---|---|---|---|---|
[60] | 2018 | Self-made | 8 | TRCA | 8 | subject-independent: 93.2%, 92.35 bits/min |
[122] | 2019 | Self-made | 16 | FBCCA | 4 | subject-dependent: 88.5% |
[123] | 2020 | Self-made | 1 | IF-EMD | 3 | subject-independent: 90.7 ± 2.9%, 54.94 ± 5.41 bits/min |
[124] | 2020 | Self-made | 1 | EA-SVM | 4 | subject-independent: 97.6% |
[125] | 2020 | Self-made | 1 | Correlation+dual threshold | 2 | subject-independent: 83.5%, 39 bits/min |
[126] | 2021 | NeuSenW | 9 | FBTRCA | 12 | subject-independent: 73.0 ± 3.0%, 201.2 ± 23.87 bits/min |
[127] | 2021 | Self-made | 8 | ALPHA | 12 | subject-independent: 72.91 ± 4.87 bits/min |
[128] | 2023 | Neuracle | 24 | FBCCA | 60-character | subject-independent: 90.18%, 117.05 bits/min |
[129] | 2024 | NeuSenW | 9 | VMD+WT+FBCCA | 12 | subject-independent: 72.46 ± 21.95% |
[71] | 2024 | Self-made | 8 | MetaBCI | 8 | subject-independent: 92.8% |
[130] | 2024 | OpenBCI | 8 | OACCA | 40 | subject-independent: 70.59 bits/min |
[131] | 2025 | Avertus H10C | 10 | SEMSCS | 8 | subject-dependent: 87.5%, 346.8 bits/min |
4. Challenges and Future Opportunities
4.1. Challenges
4.1.1. Hardware Design
4.1.2. Application Implementation
- Device fragmentation: The use of different EEG devices within the same application scenario leads to incomparable signal quality. For instance, commercial devices like DSI-24 [90,101] and consumer-grade devices such as Muse [88] exhibit significant differences in signal-to-noise ratio and impedance characteristics. Additionally, inconsistent channel configurations result in varying spatial coverage and feature extraction capabilities. Consequently, it becomes difficult to evaluate results across studies on a comparable basis. For example, in SSVEP-based applications, the ITR is influenced by both stimulation frequency and the number of channels, making it impossible to directly compare data across different studies.
- Paradigm fragmentation: Stimulation paradigms are not unified across studies, for instance, emotion induction may use VR [85,88], movies [84], music [83], or other methods. In MI studies, some classifications are based on hand movement tasks [113,118], while others involve imagined behaviors such as sitting or gait [116]. These variations in task design may introduce additional variables, further complicating the comparison of results across studies. Moreover, differences in subject groups further complicate comparisons, as some studies focus on healthy adults [107,108], whereas others involve patients [117,120], such as those undergoing stroke rehabilitation.
- Algorithm fragmentation: Within the same application context, numerous algorithm variants (over ten identified) exist, yet insufficient evidence currently supports definitive identification of the optimal machine learning approach. Furthermore, algorithm performance exhibits a strong dependence on hardware configuration due to the tight coupling between specific devices and application scenarios. Key factors include the number of channels and electrode placement. For example, in emotion recognition, a complex model like CD-EmotionNet combined with a 24-channel DSI-24 device achieved an accuracy of only 74.47% [90], while a simpler approach using the 4-channel Muse device and SVM reached 85.01% [88]. In SSVEP tasks, the ITR of a single-channel Oz electrode using IF-EMD differs by a factor of six compared to a multi-channel system using FBTRCA [123,126]. A significant computational efficiency-practicality trade-off is also evident. High-performance models such as SACC-CapsNet [75] and 3DCNN [76] impose substantial computational demands, hindering deployment on embedded platforms. In contrast, lightweight solutions like BP-AdaBoost [96] and decision trees [93,99] satisfy real-time constraints but deliver limited accuracy, typically ranging between 77% and 85%.
- Limited Generalization and Practical Applicability: The majority of current research primarily focuses on data analysis within subject-dependent scenarios in experimental design [87,101]. However, EEG patterns exhibit considerable variation between individuals, leading to a significant decline in the performance of existing models when applied to cross-subject scenarios. Furthermore, the majority of the results are still limited to offline processing [90,91,117], and substantial progress is required before these approaches can be effectively applied in real-world settings.
4.2. Future Opportunities
4.2.1. Hardware Design
4.2.2. Application Implementation
- Establish standardized evaluation benchmarks: The diversity of equipment, experimental paradigms, and algorithmic approaches has resulted in significant fragmentation across existing studies, creating a high level of variability that hinders horizontal comparison and integration of research findings [22]. This fragmentation poses a challenge to the accumulation of shared knowledge and impedes the coordinated advancement of technology within the field. To address this issue, it is essential to establish and adopt standardized procedures for the use of dry electrode EEG systems in task recognition research. Future studies should prioritize collaborative efforts within consistent application scenarios, employing standardized stimulation materials, harmonized data acquisition protocols, and unified performance evaluation metrics, as has been successfully implemented in other research domains [133,134].
- Robust and adaptive signal preprocessing: Future research should explore advanced methods suitable for addressing the highly non-stationary and nonlinear nature of dry electrode signals, such as improvements to empirical mode decomposition and its variants, time-varying autoregressive models, and recursive quantitative analysis [123,126]. These techniques will enable more effective extraction of transient features and improved handling of signal disruptions. Furthermore, a systematic investigation into the integration of additional physiological signals, such as electrooculography, electromyography, electrocardiography, and electrodermal activity, is essential to enhance the identification and removal of specific artifacts, including blinking, muscle activity, and heartbeats, in dry electrode EEG systems.
- Algorithm–hardware co-design: Future research should promote lightweight architectures that address the requirements of embedded deployment, focusing on data compression, feature engineering, and computational efficiency of recognition models. By optimizing both algorithms and hardware in tandem, it will be possible to achieve high performance while ensuring real-time processing and practical usability.
- Enhance generalizability: Future research can leverage machine learning approaches such as transfer learning [135,136], contrastive learning [137], domain adaptation [138], and meta-learning [139] to address the key generalization challenges posed by subject-independent and dataset-independent variability. These advanced techniques offer promising solutions for enhancing the robustness and adaptability of dry electrode EEG systems across diverse user populations and application scenarios.
- Expanding Potential Clinical Applications: We have highlighted the use of motor imagery for helping stroke patients interact and communicate with their surroundings in our research. However, future research should explore broader clinical applications of dry electrode EEG systems. These include long-term home monitoring of motor fluctuations, such as tremor and dyskinesia, and the assessment of cognitive decline through quantitative EEG biomarkers. Additionally, dry electrodes could be employed for detecting ambulatory epileptic seizures and evaluating treatment responses in depression and anxiety disorders via frontal alpha wave asymmetry. By advancing these applications, dry electrodes have the potential to offer portable, real-time solutions for precise clinical assessment and personalized intervention, paving the way for improved remote healthcare options.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, Y.; Wang, J.; Wang, W.; Su, J.; Bunterngchit, C.; Hou, Z.G. TFTL: A task-free transfer learning strategy for EEG-based cross-subject & cross-dataset motor imagery BCI. IEEE Trans. Biomed. Eng. 2024, 72, 810–821. [Google Scholar]
- Kilmarx, J.; Tashev, I.; Millán, J.d.R.; Sulzer, J.; Lewis-Peacock, J. Evaluating the feasibility of visual imagery for an EEG-based brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 2209–2219. [Google Scholar] [CrossRef]
- Shi, X.; Li, B.; Wang, W.; Qin, Y.; Wang, H.; Wang, X. EEG-VTTCNet: A loss joint training model based on the vision transformer and the temporal convolution network for EEG-based motor imagery classification. Neuroscience 2024, 556, 42–51. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kieu, H.D.; Nguyen, M.H.; Nguyen, T.H.A.; Can, V.M.; Nguyen, B.H.; Le, T.H. An EEG & eye-tracking dataset of ALS patients & healthy people during eye-tracking-based spelling system usage. Sci. Data 2024, 11, 664. [Google Scholar]
- Lee, M.H.; Williamson, J.; Won, D.O.; Fazli, S.; Lee, S.W. A high performance spelling system based on EEG-EOG signals with visual feedback. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1443–1459. [Google Scholar] [CrossRef]
- Deng, L.; Li, P.; Zhang, H.; Zheng, Q.; Liu, S.; Ding, X.; Wang, M.; Gao, D. TSMNet: A comprehensive network based on spatio-temporal representations for SSVEP classification. Biomed. Signal Process. Control 2025, 105, 107554. [Google Scholar] [CrossRef]
- Bright, D.; Nair, A.; Salvekar, D.; Bhisikar, S. EEG-based brain controlled prosthetic arm. In Proceedings of the 2016 Conference on Advances in Signal Processing (CASP), Pune, India, 9–11 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 479–483. [Google Scholar]
- Gao, H.; Luo, L.; Pi, M.; Li, Z.; Li, Q.; Zhao, K.; Huang, J. EEG-based volitional control of prosthetic legs for walking in different terrains. IEEE Trans. Autom. Sci. Eng. 2019, 18, 530–540. [Google Scholar] [CrossRef]
- Choi, B.J.; Liu, J. A low-cost transhumeral prosthesis operated via an ML-assisted EEG-head gesture control system. J. Neural Eng. 2025, 22, 016031. [Google Scholar] [CrossRef]
- Cioffi, E.; Hutber, A.; Molloy, R.; Murden, S.; Yurkewich, A.; Kirton, A.; Lin, J.P.; Gimeno, H.; McClelland, V.M. EEG-based sensorimotor neurofeedback for motor neurorehabilitation in children and adults: A scoping review. Clin. Neurophysiol. 2024, 167, 143–166. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ma, Y.; Cammon, J.; Fang, F.; Gao, Y.; Zhang, Y. Self-supervised EEG emotion recognition models based on CNN. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 1952–1962. [Google Scholar] [CrossRef]
- Pei, Y.; Zhao, S.; Xie, L.; Luo, Z.; Zhou, D.; Ma, C.; Yan, Y.; Yin, E. Identifying stable EEG patterns in manipulation task for negative emotion recognition. IEEE Trans. Affect. Comput. 2025, 1–15. [Google Scholar] [CrossRef]
- Gao, D.; Liu, M.; Zhang, H.; Wang, M.; Chang, H.; Ouyang, G.; Liu, S.; Li, P. A multi-domain constraint learning system inspired by adaptive cognitive graphs for emotion recognition. Neural Netw. 2025, 188, 107457. [Google Scholar] [CrossRef]
- He, C.; Chen, Y.Y.; Phang, C.R.; Stevenson, C.; Chen, I.P.; Jung, T.P.; Ko, L.W. Diversity and suitability of the state-of-the-art wearable and wireless EEG systems review. IEEE J. Biomed. Health Inform. 2023, 27, 3830–3843. [Google Scholar] [CrossRef]
- Shad, E.H.T.; Molinas, M.; Ytterdal, T. Impedance and noise of passive and active dry EEG electrodes: A review. IEEE Sens. J. 2020, 20, 14565–14577. [Google Scholar]
- Li, G.L.; Wu, J.T.; Xia, Y.H.; He, Q.G.; Jin, H.G. Review of semi-dry electrodes for EEG recording. J. Neural Eng. 2020, 17, 051004. [Google Scholar] [CrossRef]
- Lau-Zhu, A.; Lau, M.P.; McLoughlin, G. Mobile EEG in research on neurodevelopmental disorders: Opportunities and challenges. Dev. Cogn. Neurosci. 2019, 36, 100635. [Google Scholar] [CrossRef]
- Lopez-Gordo, M.A.; Sanchez-Morillo, D.; Valle, F.P. Dry EEG electrodes. Sensors 2014, 14, 12847–12870. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Zhao, J.; Dong, Y.; Wang, X. Dry electrodes for human bioelectrical signal monitoring. Sensors 2020, 20, 3651. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Li, Y.; Yang, J.; Li, H.; Yang, Q.; Guo, C.; Zhu, S.; Shu, X. State of the art of non-invasive electrode materials for brain–computer interface. Micromachines 2021, 12, 1521. [Google Scholar] [CrossRef] [PubMed]
- Di Flumeri, G.; Aricò, P.; Borghini, G.; Sciaraffa, N.; Di Florio, A.; Babiloni, F. The dry revolution: Evaluation of three different EEG dry electrode types in terms of signal spectral features, mental states classification, and usability. Sensors 2019, 19, 1365. [Google Scholar] [CrossRef]
- Dadebayev, D.; Goh, W.W.; Tan, E.X. EEG-based emotion recognition: Review of commercial EEG devices and machine learning techniques. J. King Saud-Univ.-Comput. Inf. Sci. 2022, 34, 4385–4401. [Google Scholar] [CrossRef]
- Yang, L.; Liu, Q.; Zhang, Z.; Gan, L.; Zhang, Y.; Wu, J. Materials for dry electrodes for the electroencephalography: Advances, challenges, perspectives. Adv. Mater. Technol. 2022, 7, 2100612. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, L.; Zhang, Z.; Yang, H.; Zhang, Y.; Wu, J. The feature, performance, and prospect of advanced electrodes for electroencephalogram. Biosensors 2023, 13, 101. [Google Scholar] [CrossRef]
- Medina, H.; Child, N. A review of developments in carbon-based nanocomposite electrodes for noninvasive Electroencephalography. Sensors 2025, 25, 2274. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Pei, W.; Chen, S.; Wu, X.; Zhao, S.; Wang, H.; Chen, H. Poly (3, 4-ethylenedioxythiophene)(PEDOT) as interface material for improving electrochemical performance of microneedles array-based dry electrode. Sens. Actuators Chem. 2013, 188, 747–756. [Google Scholar] [CrossRef]
- Wang, R.; Jiang, X.; Wang, W.; Li, Z. A microneedle electrode array on flexible substrate for long-term EEG monitoring. Sens. Actuators Chem. 2017, 244, 750–758. [Google Scholar] [CrossRef]
- Makvandi, P.; Maleki, A.; Shabani, M.; Hutton, A.R.; Kirkby, M.; Jamaledin, R.; Fang, T.; He, J.; Lee, J.; Mazzolai, B.; et al. Bioinspired microneedle patches: Biomimetic designs, fabrication, and biomedical applications. Matter 2022, 5, 390–429. [Google Scholar] [CrossRef]
- Kang, N.W.; Kim, S.; Lee, J.Y.; Kim, K.T.; Choi, Y.; Oh, Y.; Kim, J.; Kim, D.D.; Park, J.H. Microneedles for drug delivery: Recent advances in materials and geometry for preclinical and clinical studies. Expert Opin. Drug Deliv. 2021, 18, 929–947. [Google Scholar] [CrossRef]
- Li, W.; Terry, R.N.; Tang, J.; Feng, M.R.; Schwendeman, S.P.; Prausnitz, M.R. Rapidly separable microneedle patch for the sustained release of a contraceptive. Nat. Biomed. Eng. 2019, 3, 220–229. [Google Scholar] [CrossRef]
- Spelman, F.A. Cochlear electrode arrays: Past, present and future. Audiol. Neurotol. 2006, 11, 77–85. [Google Scholar] [CrossRef]
- Singh, O.P.; El-Badawy, I.M.; Sundaram, S.; O’Mahony, C. Microneedle electrodes: Materials, fabrication methods, and electrophysiological signal monitoring-narrative review. Biomed. Microdevices 2025, 27, 9. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.H.; Lu, S.W.; Liao, L.D.; Lin, C.T. Design, fabrication, and experimental validation of novel flexible silicon-based dry sensors for electroencephalography signal measurements. IEEE J. Transl. Eng. Health Med. 2014, 2, 2700307. [Google Scholar]
- Xiong, F.; Fan, M.; Feng, Y.; Li, Y.; Yang, C.; Zheng, J.; Wang, C.; Zhou, J. Advancements in dry and semi-dry EEG electrodes: Design, interface characteristics, and performance evaluation. AIP Adv. 2025, 15, 040703. [Google Scholar] [CrossRef]
- Xu, J.; Fan, Y.; Wang, M.; Ji, B.; Li, L.; Jin, M.; Shang, S.; Ni, C.; Cheng, Y.; Dong, L.; et al. Microneedle array electrode with Ag-PPS modification for superior bio-signal recording on skin. IEEE Sens. J. 2023, 23, 24196–24204. [Google Scholar] [CrossRef]
- Stavrinidis, G.; Michelakis, K.; Kontomitrou, V.; Giannakakis, G.; Sevrisarianos, M.; Sevrisarianos, G.; Chaniotakis, N.; Alifragis, Y.; Konstantinidis, G. SU-8 microneedles based dry electrodes for Electroencephalogram. Microelectron. Eng. 2016, 159, 114–120. [Google Scholar] [CrossRef]
- Satti, A.T.; Park, J.; Park, J.; Kim, H.; Cho, S. Fabrication of parylene-coated microneedle array electrode for wearable ECG device. Sensors 2020, 20, 5183. [Google Scholar] [CrossRef]
- Zhao, Q.; Gribkova, E.; Shen, Y.; Cui, J.; Naughton, N.; Liu, L.; Seo, J.; Tong, B.; Gazzola, M.; Gillette, R.; et al. Highly stretchable and customizable microneedle electrode arrays for intramuscular electromyography. Sci. Adv. 2024, 10, eadn7202. [Google Scholar] [CrossRef]
- Yu, Y.H.; Chen, S.H.; Chang, C.L.; Lin, C.T.; Hairston, W.D.; Mrozek, R.A. New flexible silicone-based EEG dry sensor material compositions exhibiting improvements in lifespan, conductivity, and reliability. Sensors 2016, 16, 1826. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q.; Zheng, R.; Xu, X.; Yang, X.; Gui, Q.; Yang, X.; Wang, Y.; Cui, H.; Pei, W. Flexible multichannel electrodes for acute recording in nonhuman primates. Microsystems Nanoeng. 2023, 9, 93. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.W.; Lee, C.J.; Lee, D.H.; Moon, S.H.; Park, W.T. Fabrication of barbed-microneedle array for bio-signal measurement. Sens. Actuators Phys. 2024, 367, 115040. [Google Scholar] [CrossRef]
- Li, J.; Ma, Y.; Huang, D.; Wang, Z.; Zhang, Z.; Ren, Y.; Hong, M.; Chen, Y.; Li, T.; Shi, X.; et al. High-performance flexible microneedle array as a low-impedance surface biopotential dry electrode for wearable electrophysiological recording and polysomnography. Nano-Micro Lett. 2022, 14, 132. [Google Scholar] [CrossRef] [PubMed]
- Singh, O.P.; Bocchino, A.; Guillerm, T.; Hu, Y.; Stam, F.; O’Mahony, C. Flexible, Conductive Fabric-Backed, Microneedle Electrodes for Electrophysiological Monitoring. Adv. Mater. Technol. 2024, 9, 2301606. [Google Scholar] [CrossRef]
- Lau, S.; Fei, J.; Liu, H.; Chen, W.; Liu, R. Multilayered pyramidal dissolving microneedle patches with flexible pedestals for improving effective drug delivery. J. Control Release 2017, 265, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Guvanasen, G.S.; Guo, L.; Aguilar, R.J.; Cheek, A.L.; Shafor, C.S.; Rajaraman, S.; Nichols, T.R.; DeWeerth, S.P. A stretchable microneedle electrode array for stimulating and measuring intramuscular electromyographic activity. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 25, 1440–1452. [Google Scholar] [CrossRef]
- Hou, Y.; Li, Z.; Wang, Z.; Yu, H. Miura-ori structured flexible microneedle array electrode for biosignal recording. Microsystems Nanoeng. 2021, 7, 53. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Chen, Z.; Wang, H.; Dou, Z.; Liu, B.; Jiang, L. Fabrication of bendable microneedle-array electrode by magnetorheological drawing lithography for electroencephalogram recording. IEEE Trans. Instrum. Meas. 2020, 69, 8328–8334. [Google Scholar] [CrossRef]
- Arai, M.; Nishinaka, Y.; Miki, N. Electroencephalogram measurement using polymer-based dry microneedle electrode. Jpn. J. Appl. Phys. 2015, 54, 06FP14. [Google Scholar] [CrossRef]
- Ren, L.; Xu, S.; Gao, J.; Lin, Z.; Chen, Z.; Liu, B.; Liang, L.; Jiang, L. Fabrication of flexible microneedle array electrodes for wearable bio-signal recording. Sensors 2018, 18, 1191. [Google Scholar] [CrossRef]
- Umar, A.H.; Othman, M.A.; Harun, F.K.C.; Yusof, Y. Dielectrics for non-contact ECG bioelectrodes: A review. IEEE Sens. J. 2021, 21, 18353–18367. [Google Scholar] [CrossRef]
- Portelli, A.J.; Nasuto, S.J. Design and development of non-contact bio-potential electrodes for pervasive health monitoring applications. Biosensors 2017, 7, 2. [Google Scholar] [CrossRef]
- Chen, Y.C.; Lin, B.S.; Pan, J.S. Novel noncontact dry electrode with adaptive mechanical design for measuring EEG in a hairy site. IEEE Trans. Instrum. Meas. 2015, 64, 3361–3368. [Google Scholar] [CrossRef]
- Lee, S.M.; Kim, J.H.; Park, C.; Hwang, J.Y.; Hong, J.S.; Lee, K.H.; Lee, S.H. Self-adhesive and capacitive carbon nanotube-based electrode to record electroencephalograph signals from the hairy scalp. IEEE Trans. Biomed. Eng. 2015, 63, 138–147. [Google Scholar] [CrossRef]
- Dabbaghian, A.; Yousefi, T.; Fatmi, S.Z.; Shafia, P.; Kassiri, H. A 9.2-g fully-flexible wireless ambulatory EEG monitoring and diagnostics headband with analog motion artifact detection and compensation. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 1141–1151. [Google Scholar] [CrossRef]
- Chi, Y.M.; Wang, Y.T.; Wang, Y.; Maier, C.; Jung, T.P.; Cauwenberghs, G. Dry and noncontact EEG sensors for mobile brain–computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 2011, 20, 228–235. [Google Scholar] [CrossRef]
- Dabbaghian, A.; Kassiri, H. An 8-Channel ambulatory EEG recording IC with in-channel fully-analog real-time motion artifact extraction and removal. IEEE Trans. Biomed. Circuits Syst. 2023, 17, 999–1009. [Google Scholar] [CrossRef]
- Fangmeng, Z.; Siriaraya, P.; Choi, D.; Kuwahara, N. Textile EEG cap using dry-comb electrodes for emotion detection of elderly people. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 58–66. [Google Scholar] [CrossRef]
- Shi, Z.; Jiang, B.; Liang, S.; Zhang, J.; Suo, D.; Wu, J.; Chen, D.; Pei, G.; Yan, T. Claw-shaped flexible and low-impedance conductive polymer electrodes for EEG recordings: Anemone dry electrode. Sci. China Technol. Sci. 2023, 66, 255–266. [Google Scholar] [CrossRef]
- Wang, Z.; Ding, Y.; Yuan, W.; Chen, H.; Chen, W.; Chen, C. Active claw-shaped dry electrodes for EEG measurement in hair areas. Bioengineering 2024, 11, 276. [Google Scholar] [CrossRef]
- Xing, X.; Wang, Y.; Pei, W.; Guo, X.; Liu, Z.; Wang, F.; Ming, G.; Zhao, H.; Gui, Q.; Chen, H. A high-speed SSVEP-based BCI using dry EEG electrodes. Sci. Rep. 2018, 8, 14708. [Google Scholar] [CrossRef]
- Casson, A.J. Wearable EEG and beyond. Biomed. Eng. Lett. 2019, 9, 53–71. [Google Scholar] [CrossRef] [PubMed]
- Tong, A.; Perera, P.; Sarsenbayeva, Z.; McEwan, A.; De Silva, A.C.; Withana, A. Fully 3D-printed dry EEG electrodes. Sensors 2023, 23, 5175. [Google Scholar] [CrossRef]
- Gao, K.P.; Yang, H.J.; Wang, X.L.; Yang, B.; Liu, J.Q. Soft pin-shaped dry electrode with bristles for EEG signal measurements. Sens. Actuators Phys. 2018, 283, 348–361. [Google Scholar] [CrossRef]
- Vasconcelos, B.; Fiedler, P.; Machts, R.; Haueisen, J.; Fonseca, C. The arch electrode: A novel dry electrode concept for improved wearing comfort. Front. Neurosci. 2021, 15, 748100. [Google Scholar] [CrossRef]
- Fiedler, P.; Pedrosa, P.; Griebel, S.; Fonseca, C.; Vaz, F.; Supriyanto, E.; Zanow, F.; Haueisen, J. Novel multipin electrode cap system for dry electroencephalography. Brain Topogr. 2015, 28, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Pedrosa, P.; Fiedler, P.; Lopes, C.; Alves, E.; Barradas, N.P.; Haueisen, J.; Machado, A.V.; Fonseca, C.; Vaz, F. Ag: TiN-coated Polyurethane for dry biopotential electrodes: From Polymer Plasma interface activation to the first EEG measurements. Plasma Processes Polym. 2016, 13, 341–354. [Google Scholar] [CrossRef]
- Fiedler, P.; Mühle, R.; Griebel, S.; Pedrosa, P.; Fonseca, C.; Vaz, F.; Zanow, F.; Haueisen, J. Contact pressure and flexibility of multipin dry EEG electrodes. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 750–757. [Google Scholar] [CrossRef]
- Motiepor, K.; Bakhtiyari, S.; Jahanshahi, A.; Bagherzadeh, R. Stretchable clutter-free E-textile EEG cap: Advancing seamless wearable solutions for emerging neuroimaging applications. Sens. Actuators Phys. 2025, 387, 116454. [Google Scholar] [CrossRef]
- Tseghai, G.B.; Malengier, B.; Fante, K.A.; Van Langenhove, L. Dry electroencephalography textrode for brain activity monitoring. IEEE Sens. J. 2021, 21, 22077–22085. [Google Scholar] [CrossRef]
- López-Larraz, E.; Escolano, C.; Robledo-Menéndez, A.; Morlas, L.; Alda, A.; Minguez, J. A garment that measures brain activity: Proof of concept of an EEG sensor layer fully implemented with smart textiles. Front. Hum. Neurosci. 2023, 17, 1135153. [Google Scholar] [CrossRef]
- Li, P.; Li, F.; Wang, K. A preparation technology and performance testing of a dry Nanozyme/Ir-TiO2 electrode system for EEG signal acquisition. IEEE Sens. J. 2024, 25, 99–107. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.; Li, J.; Xu, T.; Bezerianos, A.; Sun, Y.; Wan, F. Driving fatigue recognition with functional connectivity based on phase synchronization. IEEE Trans. Cogn. Dev. Syst. 2020, 13, 668–678. [Google Scholar] [CrossRef]
- Wang, H.; Xu, L.; Bezerianos, A.; Chen, C.; Zhang, Z. Linking attention-based multiscale CNN with dynamical GCN for driving fatigue detection. IEEE Trans. Instrum. Meas. 2020, 70, 2504811. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Y.; Tian, J.; Li, H.; Jiao, W.; Sun, Y.; Li, G. Driving fatigue detection with three non-hair-bearing EEG channels and modified transformer model. Entropy 2022, 24, 1715. [Google Scholar] [CrossRef]
- Chen, C.; Ji, Z.; Sun, Y.; Bezerianos, A.; Thakor, N.; Wang, H. Self-attentive channel-connectivity capsule network for EEG-based driving fatigue detection. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 3152–3162. [Google Scholar] [CrossRef]
- Zhu, M.; Chen, J.; Li, H.; Liang, F.; Han, L.; Zhang, Z. Vehicle driver drowsiness detection method using wearable EEG based on convolution neural network. Neural Comput. Appl. 2021, 33, 13965–13980. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef] [PubMed]
- Adolphs, R.; Anderson, D.J. The Neuroscience of Emotion: A New Synthesis; Princeton University Press: Princeton, NJ, USA, 2018. [Google Scholar]
- Wang, Y.; Zhang, B.; Di, L. Research progress of EEG-based emotion recognition: A survey. ACM Comput. Surv. 2024, 56, 1–49. [Google Scholar] [CrossRef]
- Li, C.; Tang, T.; Pan, Y.; Yang, L.; Zhang, S.; Chen, Z.; Li, P.; Gao, D.; Chen, H.; Li, F.; et al. An efficient graph learning system for emotion recognition inspired by the cognitive prior graph of EEG brain network. IEEE Trans. Neural Netw. Learn. Syst. 2024, 36, 7130–7144. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Chen, C.P.; Zhang, T. GDDN: Graph domain disentanglement network for generalizable EEG emotion recognition. IEEE Trans. Affect. Comput. 2024, 15, 1739–1753. [Google Scholar] [CrossRef]
- Emsawas, T.; Kimura, T.; Fukui, K.i.; Numao, M. Comparative study of wet and dry systems using EEG-based convolution neural network. Res. Sq. 2020. [Google Scholar] [CrossRef]
- Mounesi Rad, S.; Danishvar, S. Emotion recognition using EEG signals through the design of a dry electrode based on the combination of type 2 fuzzy sets and deep convolutional graph networks. Biomimetics 2024, 9, 562. [Google Scholar] [CrossRef]
- Mai, N.D.; Lee, B.G.; Chung, W.Y. Affective computing on machine learning-based emotion recognition using a self-made EEG device. Sensors 2021, 21, 5135. [Google Scholar] [CrossRef]
- Xu, T.; Yin, R.; Shu, L.; Xu, X. Emotion recognition using frontal EEG in VR affective scenes. In Proceedings of the 2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC), Nanjing, China, 6–8 May 2019; IEEE: Piscataway, NJ, USA, 2019; Volume 1, pp. 1–4. [Google Scholar]
- Pradhapan, P.; Velazquez, E.R.; Witteveen, J.A.; Tonoyan, Y.; Mihajlović, V. The role of features types and personalized assessment in detecting affective state using dry electrode EEG. Sensors 2020, 20, 6810. [Google Scholar] [CrossRef]
- Apicella, A.; Arpaia, P.; Mastrati, G.; Moccaldi, N. EEG-based detection of emotional valence towards a reproducible measurement of emotions. Sci. Rep. 2021, 11, 21615. [Google Scholar] [CrossRef]
- Suhaimi, N.S.; Mountstephens, J.; Teo, J. A dataset for emotion recognition using virtual reality and EEG (DER-VREEG): Emotional state classification using low-cost wearable VR-EEG headsets. Big Data Cogn. Comput. 2022, 6, 16. [Google Scholar] [CrossRef]
- Amrani, H.; Micucci, D.; Nalin, M.; Napoletano, P. Emotion personalization with machine learning using EEG signals and dry electrodes. In Proceedings of the 2023 IEEE International Conference on Metrology for Extended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE), Milano, Italy, 25–27 October 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 132–137. [Google Scholar]
- Liu, F.; Yang, P.; Shu, Y.; Liu, N.; Sheng, J.; Luo, J.; Wang, X.; Liu, Y.J. Emotion recognition from few-channel EEG signals by integrating deep feature aggregation and transfer learning. IEEE Trans. Affect. Comput. 2023, 15, 1315–1330. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, S.; Luo, Z.; Xie, L.; Liu, T.; Yao, D.; Yan, Y.; Yin, E. Self-supervised contrastive pre-training for dry electrode EEG emotion recognition via cross device representation consistency. In Proceedings of the ICASSP 2025—2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Hyderabad, India, 6–11 April 2025; IEEE: Piscataway, NJ, USA, 2025; pp. 1–5. [Google Scholar]
- Tang, M.; Li, P.; Zhang, H.; Deng, L.; Liu, S.; Zheng, Q.; Chang, H.; Zhao, C.; Wang, M.; Zuo, G.; et al. HMS-TENet: A hierarchical multi-scale topological enhanced network based on EEG and EOG for driver vigilance estimation. Biomed. Technol. 2024, 8, 92–103. [Google Scholar] [CrossRef]
- Mehreen, A.; Anwar, S.M.; Haseeb, M.; Majid, M.; Ullah, M.O. A hybrid scheme for drowsiness detection using wearable sensors. IEEE Sens. J. 2019, 19, 5119–5126. [Google Scholar] [CrossRef]
- Zhu, M.; Li, H.; Chen, J.; Kamezaki, M.; Zhang, Z.; Hua, Z.; Sugano, S. EEG-based system using deep learning and attention mechanism for driver drowsiness detection. In Proceedings of the 2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops), Nagoya, Japan, 11–17 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 280–286. [Google Scholar]
- Xu, T.; Wang, H.; Lu, G.; Wan, F.; Deng, M.; Qi, P.; Bezerianos, A.; Guan, C.; Sun, Y. E-key: An EEG-based biometric authentication and driving fatigue detection system. IEEE Trans. Affect. Comput. 2021, 14, 864–877. [Google Scholar] [CrossRef]
- Liu, X.; Li, G.; Wang, S.; Wan, F.; Sun, Y.; Wang, H.; Bezerianos, A.; Li, C.; Sun, Y. Toward practical driving fatigue detection using three frontal EEG channels: A proof-of-concept study. Physiol. Meas. 2021, 42, 044003. [Google Scholar] [CrossRef]
- Gangadharan, S.; Vinod, A. Drowsiness detection using portable wireless EEG. Comput. Methods Programs Biomed. 2022, 214, 106535. [Google Scholar] [CrossRef] [PubMed]
- Sheykhivand, S.; Rezaii, T.Y.; Meshgini, S.; Makoui, S.; Farzamnia, A. Developing a deep neural network for driver fatigue detection using EEG signals based on compressed sensing. Sustainability 2022, 14, 2941. [Google Scholar] [CrossRef]
- Arif, S.; Munawar, S.; Ali, H. Driving drowsiness detection using spectral signatures of EEG-based neurophysiology. Front. Physiol. 2023, 14, 1153268. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Mai, N.D.; Lee, B.G.; Chung, W.Y. Behind-the-ear EEG-based wearable driver drowsiness detection system using embedded tiny neural networks. IEEE Sens. J. 2023, 23, 23875–23892. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, W.; Li, H.; Lu, Y.; Lu, B.L. A cross-scenario and cross-subject domain adaptation method for driving fatigue detection. J. Neural Eng. 2024, 21, 046004. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Hao, Y.; Guo, W.; Jiang, B.; Li, H.; Ma, C.; Gao, Z. SGL-Net: An ultra-lightweight fatigue detection network in fast deployment scenarios. IEEE Trans. Instrum. Meas. 2025, 74, 2516312. [Google Scholar]
- Wang, P.; Nam, J.S.; Han, X. Development of a comprehensive fatigue detection model for beekeeping activities based on deep learning and EEG signals. Comput. Electron. Agric. 2024, 225, 109265. [Google Scholar] [CrossRef]
- Koles, Z.J.; Lazar, M.S.; Zhou, S.Z. Spatial patterns underlying population differences in the background EEG. Brain Topogr. 1990, 2, 275–284. [Google Scholar] [CrossRef]
- Ang, K.K.; Chin, Z.Y.; Zhang, H.; Guan, C. Filter bank common spatial pattern (FBCSP) in brain-computer interface. In Proceedings of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong Kong, China, 1–8 June 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 2390–2397. [Google Scholar]
- Thomas, K.P.; Guan, C.; Lau, C.T.; Vinod, A.P.; Ang, K.K. A new discriminative common spatial pattern method for motor imagery brain–computer interfaces. IEEE Trans. Biomed. Eng. 2009, 56, 2730–2733. [Google Scholar] [CrossRef]
- Olivas-Padilla, B.E.; Chacon-Murguia, M.I. Classification of multiple motor imagery using deep convolutional neural networks and spatial filters. Appl. Soft Comput. 2019, 75, 461–472. [Google Scholar] [CrossRef]
- Abenna, S.; Nahid, M.; Bouyghf, H.; Ouacha, B. An enhanced motor imagery EEG signals prediction system in real-time based on delta rhythm. Biomed. Signal Process. Control 2023, 79, 104210. [Google Scholar] [CrossRef]
- Shajil, N.; Mohan, S.; Srinivasan, P.; Arivudaiyanambi, J.; Arasappan Murrugesan, A. Multiclass classification of spatially filtered motor imagery EEG signals using convolutional neural network for BCI based applications. J. Med. Biol. Eng. 2020, 40, 663–672. [Google Scholar] [CrossRef]
- Casso, M.I.; Jeunet, C.; Roy, R.N. Heading for motor imagery brain-computer interfaces (MI-BCIs) usable out-of-the-lab: Impact of dry electrode setup on classification accuracy. In Proceedings of the 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER), Virtually, 4–6 May 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 690–693. [Google Scholar]
- Intarasopa, S.; Sakulkueakulsuk, B.; Chaisilprungraung, T. Evaluating the potential of low-cost BCI devices for online classification of four-class motor imagery states. In Proceedings of the International Conference on Brain Informatics, Bangkok, Thailand, 13–15 December 2024; Springer: Singapore, 2024; pp. 414–425. [Google Scholar]
- Zare, S.; Beaber, S.I.; Sun, Y. NeuroFlex: Feasibility of EEG-based motor imagery control of a soft glove for hand rehabilitation. Sensors 2025, 25, 610. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.; Bhatti, M.H.; Khan, U.G.; Iqbal, R. Multiclass EEG motor-imagery classification with sub-band common spatial patterns. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 174. [Google Scholar] [CrossRef]
- Schwarz, A.; Escolano, C.; Montesano, L.; Müller-Putz, G.R. Analyzing and decoding natural reach-and-grasp actions using gel, water and dry EEG systems. Front. Neurosci. 2020, 14, 849. [Google Scholar] [CrossRef]
- Garcia-Moreno, F.M.; Bermudez-Edo, M.; Rodríguez-Fórtiz, M.J.; Garrido, J.L. A CNN-LSTM deep learning classifier for motor imagery EEG detection using a low-invasive and low-cost BCI headband. In Proceedings of the 2020 16th International Conference on Intelligent Environments (IE), Madrid, Spain, 20–23 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 84–91. [Google Scholar]
- Jeong, J.H.; Choi, J.H.; Kim, K.T.; Lee, S.J.; Kim, D.J.; Kim, H.M. Multi-domain convolutional neural networks for lower-limb motor imagery using dry vs. wet electrodes. Sensors 2021, 21, 6672. [Google Scholar] [CrossRef]
- Yang, B.; Ma, J.; Qiu, W.; Zhu, Y.; Meng, X. A new 2-class unilateral upper limb motor imagery tasks for stroke rehabilitation training. Med. Nov. Technol. Devices 2022, 13, 100100. [Google Scholar] [CrossRef]
- Erickson, J.C.; Stepanyan, E.; Hassid, E. Comparison of dry and wet electrodes for detecting gastrointestinal activity patterns from body surface electrical recordings. Ann. Biomed. Eng. 2023, 51, 1310–1321. [Google Scholar] [CrossRef]
- Ma, J.; Yang, B.; Rong, F.; Gao, S.; Wang, W. Motor imagery decoding using source optimized transfer learning based on multi-loss fusion CNN. Cogn. Neurodyn. 2024, 18, 2521–2534. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, J.; Yang, Y.; Yang, B.; Shan, C. Motor imagery classification based on temporal-spatial domain adaptation for stroke patients. Cogn. Comput. 2025, 17, 119. [Google Scholar] [CrossRef]
- Zhang, J.; Li, K.; Yang, B.; Zhao, Z. Cross-dataset motor imagery decoding—A transfer learning assisted graph convolutional network approach. Biomed. Signal Process. Control 2025, 102, 107213. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Pei, W.; Xing, X.; Gui, Q.; Chen, H. A high-resolution dry electrode array for SSVEP-based brain-computer interfaces. In Proceedings of the 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), San Francisco, CA, USA, 20–23 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 811–814. [Google Scholar]
- Hsu, C.C.; Yeh, C.L.; Lee, W.K.; Hsu, H.T.; Shyu, K.K.; Li, L.P.H.; Wu, T.Y.; Lee, P.L. Extraction of high-frequency SSVEP for BCI control using iterative filtering based empirical mode decomposition. Biomed. Signal Process. Control 2020, 61, 102022. [Google Scholar] [CrossRef]
- Acampora, G.; Trinchese, P.; Vitiello, A. Classifying EEG signals in single-channel SSVEP-based BCIs through support vector machine. In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11–14 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 2305–2310. [Google Scholar]
- Arpaia, P.; Duraccio, L.; Moccaldi, N.; Rossi, S. Wearable brain–computer interface instrumentation for robot-based rehabilitation by augmented reality. IEEE Trans. Instrum. Meas. 2020, 69, 6362–6371. [Google Scholar] [CrossRef]
- Zhu, F.; Jiang, L.; Dong, G.; Gao, X.; Wang, Y. An open dataset for wearable SSVEP-based brain-computer interfaces. Sensors 2021, 21, 1256. [Google Scholar] [CrossRef]
- Liu, B.; Chen, X.; Li, X.; Wang, Y.; Gao, X.; Gao, S. Align and pool for EEG headset domain adaptation (ALPHA) to facilitate dry electrode based SSVEP-BCI. IEEE Trans. Biomed. Eng. 2021, 69, 795–806. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, D.; Zhao, Y.; Fan, Z.; Xiang, J.; Wang, X.; Cui, X. A flexible speller based on time-space frequency conversion SSVEP stimulation paradigm under dry electrode. Front. Comput. Neurosci. 2023, 17, 1101726. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Li, K.; Li, D.; Nan, J.; Lu, R.; Meng, Y.; Zhu, F.; Yao, N.; Han, C.; Li, Y.; et al. VMD based wavelet hybrid denoising and improved FBCCA algorithm: A new technique for wearable SSVEP recognition. Signal Image Video Process. 2024, 18, 6157–6172. [Google Scholar] [CrossRef]
- Li, X.; Wang, J.; Cao, X.; Huang, Y.; Huang, W.; Wan, F.; To, M.K.T.; Xie, S.Q. Evaluation of an online SSVEP-BCI with fast system setup. J. Neurorestoratology 2024, 12, 100122. [Google Scholar] [CrossRef]
- Ma, Y.; Huang, J.; Liu, C.; Shi, M. A portable EEG signal acquisition system and a limited-electrode channel classification network for SSVEP. Front. Neurorobot. 2025, 18, 1502560. [Google Scholar] [CrossRef]
- Wu, H.; Yang, G.; Zhu, K.; Liu, S.; Guo, W.; Jiang, Z.; Li, Z. Materials, devices, and systems of on-skin electrodes for electrophysiological monitoring and human–machine interfaces. Adv. Sci. 2021, 8, 2001938. [Google Scholar] [CrossRef] [PubMed]
- Brazma, A.; Hingamp, P.; Quackenbush, J.; Sherlock, G.; Spellman, P.; Stoeckert, C.; Aach, J.; Ansorge, W.; Ball, C.A.; Causton, H.C.; et al. Minimum information about a microarray experiment (MIAME)—toward standards for microarray data. Nat. Genet. 2001, 29, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Deus, H.F.; Zhao, J.; McCusker, J.P.; Fox, R.; Prud’hommeaux, E.; Malone, J.; Das, S.; Miller, M.; Adamusiak, T.; Serra, P.R.; et al. Translating standards into practice: One semantic web API for gene expression. In Proceedings of the 4th International Workshop on Semantic Web Applications and Tools for the Life Sciences, London, UK, 7–9 December 2011; pp. 6–7. [Google Scholar]
- Zeng, H.; Li, X.; Borghini, G.; Zhao, Y.; Aricò, P.; Di Flumeri, G.; Sciaraffa, N.; Zakaria, W.; Kong, W.; Babiloni, F. An EEG-based transfer learning method for cross-subject fatigue mental state prediction. Sensors 2021, 21, 2369. [Google Scholar] [CrossRef] [PubMed]
- Fahimi, F.; Zhang, Z.; Goh, W.B.; Lee, T.S.; Ang, K.K.; Guan, C. Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI. J. Neural Eng. 2019, 16, 026007. [Google Scholar] [CrossRef]
- Shen, X.; Liu, X.; Hu, X.; Zhang, D.; Song, S. Contrastive learning of subject-invariant EEG representations for cross-subject emotion recognition. IEEE Trans. Affect. Comput. 2022, 14, 2496–2511. [Google Scholar] [CrossRef]
- Ma, Y.; Zhao, W.; Meng, M.; Zhang, Q.; She, Q.; Zhang, J. Cross-subject emotion recognition based on domain similarity of EEG signal transfer learning. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 936–943. [Google Scholar] [CrossRef]
- Ng, H.W.; Guan, C. Subject-independent meta-learning framework towards optimal training of EEG-based classifiers. Neural Netw. 2024, 172, 106108. [Google Scholar] [CrossRef]
Ref. | Year | Details | Focus of Survey |
---|---|---|---|
[18] | 2014 | A review from the perspectives of material selection, structural design, and measurement performance, providing reference for evaluation in terms of electrochemical properties, stability, and related factors. | More focus is placed on hardware developments, which reviews progress up to 2014. |
[21] | 2019 | A review of signal quality and usability in comprehensive comparison with wet electrodes. | More focus is placed on hardware advancements, which reviews three types of dry electrodes: gold-coated single pin, multiple pins, and solid gel electrodes. |
[19] | 2020 | A review of the development of dry electrodes in terms of sensing principles, material selection, device fabrication, and measurement performance. | More focus is placed on the material characteristics of dry electrodes currently used for bioelectric signal monitoring, with a brief overview of their application scenarios. |
[15] | 2020 | A review of impedance and noise in EEG systems, focusing on impedance types, dry electrode materials, noise sources, mitigation strategies, and amplifier–impedance interactions. | More focus is placed on recent hardware advancements, which reviews the latest amplifiers and electrodes from the perspective of impedance and noise. |
[20] | 2021 | A review of the development of dry, wet, and semi-dry EEG electrodes in terms of material selection, structural design and performance evaluation standards. | More focus is given to the hardware development of non-invasive electrodes, not limited to dry electrodes. |
[22] | 2022 | A review of consumer EEG devices and their effectiveness in emotion recognition reliability testing. | More focused on a single emotion recognition application scenario. |
[23] | 2022 | A review of the fabrication of dry EEG electrode materials and the characteristics of the acquired EEG signals. | More focus is given to the hardware development. |
[24] | 2023 | A review of the physical properties and signal performance of advanced EEG electrodes based on their skin-contact mechanisms. | More focused on hardware progress from the perspective of skin-contact mechanisms. |
[25] | 2025 | A review of recent advances in the characterization, design, fabrication, and performance of carbon-based nanocomposites for EEG electrodes. | More focus is placed on the progress of carbon-based nanocomposite electrodes. |
Ours | 2025 | A review of recent advances in the hardware design and application performance of dry electrode EEG systems across multiple typical BCI scenarios. | More focus is placed on the recent developments in dry electrode hardware design, and the research progress of dry electrode EEG systems in specific BCI application scenarios, bridging hardware and application through algorithmic approaches and achievable performance metrics. |
Ref. | Year | Device | Channels | Model | Research Area | Category | Performance |
---|---|---|---|---|---|---|---|
[93] | 2019 | Muse2016 | 4 | SVM/KNN/DT/ LDA/QDA | Drowsiness | 2 | subject-independent: 86.50% |
[72] | 2020 | Cognionics | 24 | Graph theory | Fatigue | 2 | subject-independent: 96.76% |
[73] | 2020 | Cognionics | 24 | AMCNN-DGCN | Fatigue | 2 | subject-independent: 95.65% |
[76] | 2021 | OpenBCI | 8 | Inception-CNN | Drowsiness | 2 | subject-independent: 95.59% |
[94] | 2021 | OpenBCI | 8 | Attention-ResNet | Drowsiness | 2 | 93.35% |
[95] | 2021 | Cognionics | 24 | CNN-Attention | Fatigue PI | 2 | subject-dependent: Fatigue: 97.80% PI: 98.5% |
[96] | 2021 | Mindo-4 | 3 | BP-AdaBoost | Fatigue | 2 | subject-dependent: 92.7 ± 0.92% subject-independent: 77.13 ± 0.85% |
[97] | 2022 | Muse2 | 3 | SVM | Drowsiness | 2 | subject-independent: 78.3% |
[74] | 2022 | Cognionics | 24 | GLU-Oneformer | Fatigue | 2 | 86.97% |
[98] | 2022 | G-Tec | 32 | CS+CNN-LSTM | Fatigue | 2 | CS ratio: 0 → Accuracy: 99.1% CS ratio: 40% → Accuracy: 95% CS ratio: 90% → Accuracy: 92% |
[99] | 2023 | OpenBCI | 16 | Bagged decision tree | Drowsiness | 2 | subject-independent: 85.6% |
[100] | 2023 | Self-made | 4 | MLP/CNN | Drowsiness | 2 | On device: 96.24% (subject-independent) |
[75] | 2023 | Cognionics | 24 | SACC-CapsNet | Fatigue | 2 | Session 1: 94.17% (Subject-dependent) Session 2: 90.59% (subject-dependent) cross-session: 75.86% subject-independent: 71.37% |
[76] | 2024 | Cognionics | 18 | MASK-3DCNN | Fatigue | 4 | subject-independent: 94.90% |
[101] | 2024 | DSI-24 | 24 | CS2DA | Fatigue | Regression | SEED-VLA: 0.47 (subject-dependent) SEED-VRW: 0.53 (subject-dependent) cross-scenario: 0.6188 |
[102] | 2025 | Self-made | 2 | SGL-Net | Fatigue | 4 | subject-dependent: 94.10% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Qian, B.; Gao, J.; Zhao, S.; Cui, Y.; Luo, Z.; Shi, K.; Yin, E. Recent Advances in Portable Dry Electrode EEG: Architecture and Applications in Brain-Computer Interfaces. Sensors 2025, 25, 5215. https://doi.org/10.3390/s25165215
Zhang M, Qian B, Gao J, Zhao S, Cui Y, Luo Z, Shi K, Yin E. Recent Advances in Portable Dry Electrode EEG: Architecture and Applications in Brain-Computer Interfaces. Sensors. 2025; 25(16):5215. https://doi.org/10.3390/s25165215
Chicago/Turabian StyleZhang, Meihong, Bocheng Qian, Jianming Gao, Shaokai Zhao, Yibo Cui, Zhiguo Luo, Kecheng Shi, and Erwei Yin. 2025. "Recent Advances in Portable Dry Electrode EEG: Architecture and Applications in Brain-Computer Interfaces" Sensors 25, no. 16: 5215. https://doi.org/10.3390/s25165215
APA StyleZhang, M., Qian, B., Gao, J., Zhao, S., Cui, Y., Luo, Z., Shi, K., & Yin, E. (2025). Recent Advances in Portable Dry Electrode EEG: Architecture and Applications in Brain-Computer Interfaces. Sensors, 25(16), 5215. https://doi.org/10.3390/s25165215