High-Precision Calibration Technology and Experimental Verification for Dual-Axis Laser Communication Systems
Abstract
1. Introduction
2. Error Analysis
- The azimuth axis is perpendicular to the horizontal plane.
- The elevation axis is perpendicular to the azimuth axis.
- The collimation axis is perpendicular to the elevation axis.
2.1. Elevation Axis Error
2.2. Encoder Errors
2.3. Atmospheric Refraction
2.4. Other Errors
3. Error Correction Mathematical Model Establishment
- (1)
- Incomplete analysis of error sources, where errors caused by mechanical deformation, time delays, and environmental factors cannot be expressed by explicit functions;
- (2)
- Small-angle approximation neglecting high-order terms;
- (3)
- Assumption of independent errors (not strictly valid).
4. Error Data Acquisition
4.1. Star Selection and Observation
4.2. Theoretical Star Position Calculation
4.3. Theoretical Observation Angle Calculation
4.4. Atmospheric Refraction Correction
4.5. Centroid Calculation
4.6. Excluding Outliers
5. Error Model Parameter Fitting
5.1. Test Platform Parameters and Meteorological Conditions
5.2. Star Selection and Test Procedure
6. Observation Experiment Results and Verification
6.1. System Error Correction
6.2. Stellar Observation and Calibration
6.3. Results Analysis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bai, Z.G. Development achievements and prospects of China modern small satellite. Spacecr. Eng. 2019, 28, 1–8. [Google Scholar]
- Cao, H.Y.; Gao, H.T.; Zhao, C.G. Development of China land quantitative remote sensing satellite technology. Spacecr. Eng. 2018, 27, 1–9. [Google Scholar]
- Di, D.; Li, J.; Han, W.; Bai, C.W.; Wu, C.Q.; Wu, C.Q.; Menzel, P.W. Enhancing the fast radiative transfer model for FengYun-4 GIIRS by using local training profiles. J. Geophys. Res. Atmos. 2018, 123, 12583–12596. [Google Scholar] [CrossRef]
- Toyoshima, M. Recent trends in space laser communications for small satellites and constellations. J. Light. Technol. 2021, 39, 693–699. [Google Scholar] [CrossRef]
- Wang, T.S.; Lin, P.; Dong, F.; Liu, X.; Ma, W.; Fu, Q. Progress and prospect of space laser communication technology. Strateg. Study CAE 2020, 22, 92–99. [Google Scholar] [CrossRef]
- Sodnik, Z.; Smit, H.; Sans, M.; Zayer, I.; Lanucara, M.; Montilla, I.; Alonso, A.; Hemmati, H.; Boroson, D.M. LLCD operations using the Lunar Lasercom OGS Terminal. Proc. SPIE 2014, 8971, 89710W. [Google Scholar]
- Chorvalli, V.; Le Hors, L.; Vaillon, L.; Planche, G.; Costeraste, J.; Armandillo, E.; Karafolas, N. Optical communications between an aircraft and a GEO relay satellite: Design and flight results of the LOLA demonstrator. Proc. SPIE 2017, 10566, 1056619. [Google Scholar]
- Poncet, D.; Glynn, S.; Heine, F. Hosting the first EDRS payload. Proc. SPIE 2017, 10563, 105630D. [Google Scholar]
- Biswas, A.; Oaida, B.; Andrews, K.S.; Kovalik, J.M.; Abrahamson, M.; Wright, M.W.; Hemmati, H.; Boroson, D.M. Optical payload for lasercomm science (OPALS) link validation during operations from the ISS. In Proceedings of the Free-Space Laser Communication and Atmospheric Propagation XXVII, San Francisco, CA, USA, 7–12 February 2015; pp. 123–132. [Google Scholar]
- Wright, M.W.; Kovalik, J.; Morris, J.; Abrahamson, M.; Biswas, A.; Hemmati, H.; Boroson, D.M. LEO-to-ground optical communications link using adaptive optics correction on the OPALS downlink. In Proceedings of the Free-Space Laser Communication and Atmospheric Propagation XXVIII, San Francisco, CA, USA, 13–18 February 2016; pp. 19–28. [Google Scholar]
- Rose, T.S.; Rowen, D.W.; Lalumondiere, S.; Werner, N.I.; Linares, R.; Faler, A.; Wicker, J.; Coffman, C.M.; Maul, G.A.; Chien, D.H.; et al. Optical communications downlink from a 1.5 U CubeSat: OCSD program. In Proceedings of the International Conference on Space Optics—ICSO 2018, Chania, Greece, 9–12 October 2018; pp. 201–212. [Google Scholar]
- Kaymak, Y.; Rojas-Cessa, R.; Feng, J.; Ansari, N.; Zhou, M.C.; Zhang, T. A survey on acquisition, tracking, and pointing mechanisms for mobile free-space optical communications. IEEE Commun. Surv. Tutor. 2018, 20, 1104–1123. [Google Scholar] [CrossRef]
- Israel, D.J.; Edwards, B.L.; Butler, R.L.; Moores, J.D.; Piazzolla, S.; du Toit, N.; Braatz, L.; Hemmati, H.; Robinson, B.S. Early results from NASA’s laser communications relay demonstration (LCRD) experiment program. In Proceedings of the Free-Space Laser Communications XXXV, San Francisco, CA, USA, 30 January–1 February 2023; pp. 10–24. [Google Scholar]
- Roberts, L.C.; Meeker, S.R.; Tesch, J.; Shelton, J.C.; Roberts, J.E.; Fregoso, S.F.; Troung, T.; Peng, M.; Matthews, K.; Herzog, H.; et al. Performance of the adaptive optics system for Laser Communications Relay Demonstration’s Ground Station 1. Appl. Opt. 2023, 62, G26–G36. [Google Scholar] [CrossRef]
- Israel, D.J.; Edwards, B.L.; Butler, R.L.; Moores, J.D.; Piazzolla, S.; Woodward, J.; Hylton, A.; Du Toit, N.; Braatz, L.E.; Hemmati, H.; et al. NASA’s laser communications relay demonstration (LCRD) experiment program: Characterization and initial operations. In Proceedings of the Free-Space Laser Communications XXXVI, San Francisco, CA, USA, 27 January–1 February 2024; pp. 14–31. [Google Scholar]
- Riesing, K.; Schieler, C.M.; Brown, J.; Chang, J.; Gilbert, N.; Horvath, A.; Petrilli, J.; Reeve, R.; Robinson, B.; Scozzafava, J.; et al. Pointing, acquisition, and tracking for the TBIRD CubeSat mission: System design and pre-flight results. In Proceedings of the Free-Space Laser Communications XXXIV, San Francisco, CA, USA, 22 January–28 February 2022; pp. 207–216. [Google Scholar]
- Schieler, C.M.; Riesing, K.M.; Bilyeu, B.C.; Robinson, B.S.; Wang, J.P.; Roberts, W.T. TBIRD 200-Gbps CubeSat downlink: System architecture and mission plan. In Proceedings of the 2022 IEEE International Conference on Space Optical Systems and Applications (ICSOS), Kyoto City, Japan, 28–31 March 2022; pp. 181–185. [Google Scholar]
- Riesing, K.M.; Schieler, C.M.; Chang, J.S.; Gilbert, N.J.; Horvath, A.J.; Reeve, R.S.; Robinson, B.S.; Wang, J.P.; Agrawal, P.S.; Goodloe, R.A. On-orbit results of pointing, acquisition, and tracking for the TBIRD CubeSat mission. In Proceedings of the Free-Space Laser Communications XXXV, San Francisco, CA, USA, 28 January–3 February 2023; pp. 25–33. [Google Scholar]
- Schieler, C.M.; Riesing, K.M.; Bilyeu, B.C.; Chang, J.S.; Garg, A.S.; Gilbert, N.C.; Horvath, A.J.; Reeve, R.S.; Robinson, B.S.; Wang, J.P.; et al. On-orbit demonstration of 200-Gbps laser communication downlink from the TBIRD CubeSat. In Proceedings of the Free-Space Laser Communications XXXV, San Francisco, CA, USA, 28 January–3 February 2023; p. 1241302. [Google Scholar]
- Murphy, K. TBIRD Is a Game Changer and Will Be very Important for Future Human Exploration and Science Missions [EB/OL]. 24 May 2022. Available online: https://www.nasa.gov/feature/tbird-demonstrating-200gbps-laser-downlink-from-space/ (accessed on 4 April 2025).
- Srinivasan, M.; Alerstam, E.; Wollman, E.; Rogalin, R.; Meenehan, S.; Shaw, M.; Velasco, A.E.; Biswas, A.; Richard, N.; Cho, D.; et al. The deep space optical communications project ground laser receiver. In Proceedings of the Free-Space Laser Communications XXXV, San Francisco, CA, USA, 15 March 2023; pp. 195–206. [Google Scholar]
- Gregor, R.; Baister, G.; Bacher, M.; Strumpf, M.; Francou, L.; Buchheim, K.; Karafolas, N.; Cugny, B.; Sodnik, Z. OPTEL-μ LEO to ground laser communications terminal: Flight design and status of the EQM development project. In Proceedings of the International Conference on Space Optics—ICSO 2016, Biarritz, France, 18–21 October 2016; pp. 824–832. [Google Scholar]
- Dreischer, T.; Thieme, B.; Bacher, M.; Buchheim, K. OPTEL-μ: A compact system for optical downlinks from LEO satellites. J. Spacecr. Rocket. 2012, 49, 706–715. [Google Scholar]
- Seel, S.; Kampfner, H.; Heine, F.; Dallmann, D.; Muhlnikel, G.; Gregory, M.; Reinhardt, M.; Saucke, K.; Muckherjee, J.; Sterr, U.; et al. Space to Ground bidirectional optical communication link at 5.6 Gbps and EDRS connectivity outlook. In Proceedings of the 2011 Aerospace Conference, Big Sky, MT, USA, 5–12 March 2011; pp. 1–7. [Google Scholar]
- Tröndle, D.; Pimentel, P.M.; Rochow, C.; Zech, H.; Muehlnikel, G.; Heine, F.; Meyer, R.; Philipp-May, S.; Lutzer, M.; Benzi, E.; et al. Alphasat-Sentinel-1A optical inter-satellite links: Run-up for the European data relay satellite system. In Proceedings of the Free-Space Laser Communication and Atmospheric Propagation XXVIII, San Francisco, CA, USA, 15 March 2016; p. 973902. [Google Scholar]
- Fuchs, C.; Schmidt, C. Update on DLR’s OSIRIS program. In Proceedings of the International Conference on Space Optics (ICSO 2018), Chania, Greece, 9–12 October 2018; pp. 192–200. [Google Scholar]
- Sodnik, Z.; Heese, C.; Arapoglou, P.-D.; Schulz, K.-J.; Zayer, I.; Daddato, R.; Kraft, S. Deep-space optical communication system (DOCS) for ESA’s space weather mission to lagrange orbit L5. In Proceedings of the 2017 IEEE International Conference on Space Optical Systems and Applications (ICSOS), Naha, Japan, 14–16 November 2017; pp. 28–33. [Google Scholar]
- Rosen, D.; Pierce, R.S. A method for integrating form errors into geometric tolerance analysis. J. Mech. Des. 2008, 130, 345–350. [Google Scholar]
- Gawronski, W. Control and pointing challenges of large antennas and telescopes. IEEE Trans. Control Syst. Technol. 2007, 15, 276–289. [Google Scholar] [CrossRef]
- Prestage, R.M.; Constantikes, K.T.; Hunter, T.R. The Green Bank Telescope. Proc. IEEE 2009, 97, 1382–1390. [Google Scholar] [CrossRef]
- Baher, F.; Quintero, O.; Gawronski, W. Azimuth-track level compensation to reduce blind-pointing errors of the deep space network antennas. IEEE Antennas Propag. Mag. 2000, 42, 50–60. [Google Scholar]
- Chamberlin, R.A.; Lane, A.P.; Stark, A.A. The 492 GHz atmospheric opacity at the geographic South Pole. Astrophys. J. 1997, 476, 428. [Google Scholar] [CrossRef]
- Penalver, J.; Lisenfeld, U.; Mauersberger, R. Pointing with the IRAM 30m telescope. In Proceedings of the International Conference on Astronomical Telescopes and Instrumentation, Munich, Germany, 27 March–1 April 2000. [Google Scholar]
- Hirabayashi, H.; Hirosawa, H.; Kobayashi, H. The VLBI Space Observatory Programme and the Radio-Astronomical Satellite HALCA. Publ. Astron. Soc. Jpn. 2000, 52, 955–965. [Google Scholar] [CrossRef]
- Chen, X.-J.; Wang, Z.-H.; Wang, Z.-B.; Zeng, Q.-S. Angle measurement error and compensation for pitched rotation of circular grating. J. Harbin Inst. Technol. 2011, 18, 11–15. [Google Scholar]
- Watanabe, T.; Fujimoto, H.; Nakayama, K.; Masuda, T.; Kajitani, M.; Decker, J.E.; Brown, N. Automatic high-precision calibration system for angle encoder (II). Proc. SPIE 2003, 5190, 100–110. [Google Scholar] [CrossRef]
- Watanabe, T.; Masuda, T.; Kajitani, M.; Fujimoto, H.; Nakayama, K. Automatic high-precision calibration system for angle encoder. J. Jpn. Soc. Precis. Eng. 2001, 67, 1091–1095. [Google Scholar] [CrossRef]
- Arapoglou, P.-D.; Sodnik, Z.; Heese, C.; Schulz, K.-J.; Zayer, I.; Daddato, R.J.; Hemmati, H.; Boroson, D.M. European deep-space optical communication program. Proc. SPIE 2018, 10524, 105240Q. [Google Scholar]
- Matsuzoe, Y. Error dispersion algorithms to improve angle precision for an encoder. Opt. Eng. 2002, 41, 2282–2289. [Google Scholar] [CrossRef]
- Korotkova, O.; Sahin, S.; Tong, Z. Stochastic electromagnetic beams for lidar systems operating through turbulent atmosphere. Appl. Phys. B 2009, 97, 567–575. [Google Scholar] [CrossRef]
- Sahin, S.; Tong, Z.; Korotkova, O. Sensing of semi-rough targets embedded in atmospheric turbulence by means of stochastic electromagnetic beams. Optics Commun. 2010, 283, 4512–4518. [Google Scholar] [CrossRef]
- Rochblatt, D.; Richter, P.; Withington, P.; Vazquez, M.; Calvo, J. New antenna calibration techniques in the Deep Space Network. Interplanet. Netw. Prog. Rep. 2007, 42–170, 1–15. [Google Scholar]
26 March 2025 | 22 November 2024 | 26 December 2024 | 12 December 2024 | |
---|---|---|---|---|
Temperature (°C) | 2.1 | 2.3 | −11.3 | −8.1 |
Pressure (kPa) | 97.8 | 98.3 | 91.6 | 90.6 |
Humidity (%) | 76.3 | 76.2 | 72.1 | 73.1 |
Item | 26 December 2024 | 12 December 2024 | 22 November 2024 | 26 March 2025 |
---|---|---|---|---|
Valid stars post-3σ truncation | 68 | 68 | 63 | 66 |
Airspace without valid stars | 8 | 9 | 14 | 11 |
number of anomalous stars 3σ-truncated | 1 | 0 | 0 | 0 |
Iteration count | 1 | 1 | 1 | 1 |
Post-correction mean residual (″) | 4.93 | 5.16 | 3.3 | 3.0 |
Post-correction residual variance (″) | 1.62 | 1.46 | 1.32 | 1.26 |
Post-correction residual RMS (″) | 5.13 | 5.30 | 3.52 | 3.22 |
Temperature (°C) | −11.3 | −8.1 | 2.3 | 2.1 |
Pressure (kPa) | 91.6 | 90.6 | 98.3 | 97.8 |
Humidity (%) | 72.1 | 73.1 | 76.2 | 76.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Zhang, X.; Zhang, L.; Wei, X.; Luo, G.; Zhang, P.; Xue, Z. High-Precision Calibration Technology and Experimental Verification for Dual-Axis Laser Communication Systems. Sensors 2025, 25, 5233. https://doi.org/10.3390/s25175233
Li W, Zhang X, Zhang L, Wei X, Luo G, Zhang P, Xue Z. High-Precision Calibration Technology and Experimental Verification for Dual-Axis Laser Communication Systems. Sensors. 2025; 25(17):5233. https://doi.org/10.3390/s25175233
Chicago/Turabian StyleLi, Wenyan, Xiaolei Zhang, Lei Zhang, Xiang Wei, Guoxi Luo, Peng Zhang, and Zhipeng Xue. 2025. "High-Precision Calibration Technology and Experimental Verification for Dual-Axis Laser Communication Systems" Sensors 25, no. 17: 5233. https://doi.org/10.3390/s25175233
APA StyleLi, W., Zhang, X., Zhang, L., Wei, X., Luo, G., Zhang, P., & Xue, Z. (2025). High-Precision Calibration Technology and Experimental Verification for Dual-Axis Laser Communication Systems. Sensors, 25(17), 5233. https://doi.org/10.3390/s25175233