Design Considerations for a 120 GHz MIMO Sparse Radar Array Based on SISO Integrated Circuits
Abstract
1. Introduction
2. Performance Criteria and Array Arrangement
2.1. MIMO Radar Array Theory
2.2. Chips Arrangement
- minimum distance among chips equal to in case of TRA_120_45 transceiver;
- the higher the inter-chip distance, the worse the FOV, but the better the angular resolution;
- there is very little difference in terms of resolution between the two different array topologies;
- a 50% FOV improvement by rotating the second integrated circuit.
3. Simulation and Final Considerations
- lower side lobe level;
- less cumbersome presence of grating lobes;
- angular resolution comparable to the other presented solution;
- significant increase in terms of FOV.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alistarh, C.A.; Podilchak, S.K.; Re, P.D.H.; Strober, T.M.; Pailhas, Y.; Mateo-Segura, C.; Sellathurai, M.; Goussetis, G.; Petillot, Y.R.; Thompson, J.S.; et al. Sectorized FMCW MIMO Radar by Modular Design with Non-Uniform Sparse Arrays. IEEE J. Microw. 2022, 2, 442–460. [Google Scholar] [CrossRef]
- Cardillo, E.; Li, C. Portable Microwave and mmWave Radars for Contactless Healthcare, 1st ed.; River Publishers: New York, NY, USA, 2024; ISBN 978-87-7004-753-1. [Google Scholar]
- Li, X.; Wang, X.; Yang, Q.; Fu, S. Signal Processing for TDM MIMO FMCW Millimeter-Wave Radar Sensors. IEEE Access 2021, 9, 167959–167971. [Google Scholar] [CrossRef]
- Cardillo, E.; Ferro, L. Multi-Frequency Analysis of Microwave and Millimeter-Wave Radars for Ship Collision Avoidance. In Proceedings of the 2022 IEEE Microwave Mediterranean Symposium (MMS), Pizzo Calabro, Italy, 9–13 May 2022; pp. 1–4. [Google Scholar]
- Renukaswamy, P.T.; Craninckx, J. Chirp Generation Techniques and Tradeoffs for Integrated FMCW Radar: A Tutorial Review. IEEE Solid-State Circuits Mag. 2025, 17, 86–96. [Google Scholar] [CrossRef]
- Ferro, L.; Scandurra, G.; Li, C.; Cardillo, E. Robust Doppler Displacement Measurement Resolving the Uncertainty During Target Stationary Moment. In Proceedings of the 2024 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNeT), San Antonio, TX, USA, 21–24 January 2024; pp. 57–60. [Google Scholar]
- Pramudita, A.A.; Lin, D.-B.; Dhiyani, A.A.; Ryanu, H.H.; Adiprabowo, T.; Yudha, E.A. FMCW Radar for Noncontact Bridge Structure Displacement Estimation. IEEE Trans. Instrum. Meas. 2023, 72, 8504914. [Google Scholar] [CrossRef]
- Ferro, L.; Li, C.; Scandurra, G.; Ciofi, C.; Cardillo, E. Beneficial Effects of Self-Motion for the Continuous Phase Analysis of Ac-Coupled Doppler Radars. Electronics 2024, 13, 772. [Google Scholar] [CrossRef]
- Anghel, A.; Vasile, G.; Cacoveanu, R.; Ioana, C.; Ciochina, S. Short-Range Wideband FMCW Radar for Millimetric Displacement Measurements. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5633–5642. [Google Scholar] [CrossRef]
- Cardillo, E.; Ferro, L.; Li, C.; Caddemi, A. Microwave Radars for Automotive In-Cabin Detection. In Proceedings of SIE 2022; Cocorullo, G., Crupi, F., Limiti, E., Eds.; Lecture Notes in Electrical Engineering; Springer Nature: Cham, Switzerland, 2023; Volume 1005, pp. 75–80. ISBN 978-3-031-26065-0. [Google Scholar]
- Gao, H.; Williams, C.; Rizzi Varela, V.G.; Li, C. Violin Gesture Recognition Using FMCW Radars. In Proceedings of the 2023 IEEE Topical Conference on Wireless Sensors and Sensor Networks, Las Vegas, NV, USA, 22–25 January 2023; pp. 13–15. [Google Scholar]
- Cardillo, E.; Sapienza, G.; Ferro, L.; Li, C.; Caddemi, A. Radar Assistive System for People with Neurodegenerative Disorders Through Head Motion and Eyes Blinking Detection. In Proceedings of the 2023 IEEE/MTT-S International Microwave Symposium—IMS 2023, San Diego, CA, USA, 11–16 June 2023; pp. 979–982. [Google Scholar]
- Cardillo, E.; Ferro, L.; Sapienza, G.; Li, C. Reliable Eye-Blinking Detection with Millimeter-Wave Radar Glasses. IEEE Trans. Microw. Theory Tech. 2024, 72, 771–779. [Google Scholar] [CrossRef]
- Cardillo, E.; Ferro, L.; Li, C. Microwave and Millimeter-Wave Radar Circuits for the Next Generation Contact-Less In-Cabin Detection. In Proceedings of the 2022 IEEE Asia-Pacific Microwave Conference (APMC), Yokohama, Japan, 29 November–2 December 2022; pp. 231–233. [Google Scholar]
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A Tutorial on Synthetic Aperture Radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef]
- Xue, F.; Lv, X.; Dou, F.; Yun, Y. A Review of Time-Series Interferometric SAR Techniques: A Tutorial for Surface Deformation Analysis. IEEE Geosci. Remote Sens. Mag. 2020, 8, 22–42. [Google Scholar] [CrossRef]
- Xue, F.; Wang, X.; Xu, F.; Wang, Y. Polarimetric SAR Interferometry: A Tutorial for Analyzing System Parameters. IEEE Geosci. Remote Sens. Mag. 2020, 8, 83–107. [Google Scholar] [CrossRef]
- Wang, W.-Q. Multi-Antenna Synthetic Aperture Radar; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Fabrizi, A.; Fiener, P.; Jagdhuber, T.; Van Oost, K.; Wilken, F. Plasticulture Detection at the Country Scale by Combining Multispectral and SAR Satellite Data. Sci. Rep. 2025, 15, 11339. [Google Scholar] [CrossRef]
- Uddin, K.; Matin, M.A.; Meyer, F.J. Operational Flood Mapping Using Multi-Temporal Sentinel-1 SAR Images: A Case Study from Bangladesh. Remote Sens. 2019, 11, 1581. [Google Scholar] [CrossRef]
- Mondini, A.C.; Guzzetti, F.; Chang, K.-T.; Monserrat, O.; Martha, T.R.; Manconi, A. Landslide Failures Detection and Mapping Using Synthetic Aperture Radar: Past, Present and Future. Earth-Sci. Rev. 2021, 216, 103574. [Google Scholar] [CrossRef]
- Bredendiek, C.; Starke, D.; Kueppers, S.; Aufinger, K.; Pohl, N. 120 GHz MIMO FMCW Radar Chipset in a SiGe Bipolar Technology. Int. J. Microw. Wirel. Technol. 2024, 17, 164–176. [Google Scholar] [CrossRef]
- Bilato, A.; Issakov, V.; Mazzanti, A.; Bevilacqua, A. A Multichannel D-Band Radar Receiver with Optimized LO Distribution. IEEE Solid-State Circuits Lett. 2021, 4, 141–144. [Google Scholar] [CrossRef]
- Di Serio, A.; Hugler, P.; Roos, F.; Waldschmidt, C. 2-D MIMO Radar: A Method for Array Performance Assessment and Design of a Planar Antenna Array. IEEE Trans. Antennas Propag. 2020, 68, 4604–4616. [Google Scholar] [CrossRef]
- Yi, H.; Wang, Z.; Xia, D.; Liu, H.; Li, L. Periodic Asymmetric Trapezoidal Perturbation Microstrip Antenna for Millimeter-Wave Automotive Radar Sensors. IEEE Trans. Antennas Propag. 2023, 71, 1369–1377. [Google Scholar] [CrossRef]
- Kueppers, S.; Cetinkaya, H.; Herschel, R.; Pohl, N. A Compact 24 × 24 Channel MIMO FMCW Radar System Using a Substrate Integrated Waveguide-Based Reference Distribution Backplane. IEEE Trans. Microw. Theory Tech. 2020, 68, 2124–2133. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, Y.; Zhang, P. A Sparse Uniform Linear Array DOA Estimation Algorithm for FMCW Radar. IEEE Signal Process. Lett. 2023, 30, 823–827. [Google Scholar] [CrossRef]
- Ruan, H.; Balon, S.; Wu, J.; Liu, Q.; Sun, J.; Wu, X. A Joint Design of Sparse Array Layout and DOA Algorithm for mmWave FMCW Radar. In Proceedings of the 2024 IEEE Radar Conference (RadarConf24), Denver, CO, USA, 6–10 May 2024; pp. 1–6. [Google Scholar]
- He, G.; Zhang, Y.; Dong, Z.; Song, T.; Zhu, J.; Wang, J. A DOA Estimation Algorithm with No Angle Ambiguity for SULA of FMCW Radar. In Proceedings of the 2024 IEEE International Radar Conference (RADAR), Rennes, France, 21–25 October 2024; pp. 1–5. [Google Scholar]
- Long, H.; Zhang, Z.; Yang, Z. High-Resolution Radar Imaging Jointly Exploiting Multiple Beams with Sidelobes and Grating Lobes. In Proceedings of the 2025 IEEE Wireless Communications and Networking Conference (WCNC), Milan, Italy, 24–27 March 2025; pp. 1–6. [Google Scholar]
- Orfanidis, S.J. Electromagnetic Waves and Antennas, 2004th ed.; Rutgers University: New Brunswick, NJ, USA, 2002. [Google Scholar]
- Vasanelli, C.; Di Serio, A.; Waldschmidt, C. Corrections to “Assessment of a Millimeter-Wave Antenna System for MIMO Radar Applications”. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 720. [Google Scholar] [CrossRef]
- TRAˍ120ˍ045 120-GHz Wide-Band IQ Transceiver with Antennas on Chip, Indie Semiconductor FFO GmbH, Germany, June 2023. Available online: https://www.indie.inc/radar-portfolio/ (accessed on 4 September 2025).
- Valenta, V.; Spreng, T.; Yuan, S.; Winkler, W.; Ziegler, V.; Dancila, D.; Rydberg, A.; Schumacher, H. Design and Experimental Evaluation of Compensated Bondwire Interconnects above 100 GHz. Int. J. Microw. Wirel. Technol. 2015, 7, 261–270. [Google Scholar] [CrossRef]
- Syeda, R.Z.; Van Beurden, M.C.; Smolders, A.B. Sparse Virtual Array Synthesis for MIMO Radar Imaging Systems. IET Microw. Antennas Propag. 2021, 15, 1458–1472. [Google Scholar] [CrossRef]
- Peng, Z.; Li, C. A Portable K-Band 3-D MIMO Radar with Nonuniformly Spaced Array for Short-Range Localization. IEEE Trans. Microw. Theory Tech. 2018, 66, 5075–5086. [Google Scholar] [CrossRef]
- Skolnik, M.I. Radar Handbook, 3rd ed.; McGraw-Hill: New York, NY, USA, 2008; ISBN 978-0-07-148547-0. [Google Scholar]
- Spreng, T.; Yuan, S.; Valenta, V.; Schumacher, H.; Siart, U.; Ziegler, V. Wideband 120 GHz to 140 GHz MIMO Radar: System Design and Imaging Results. In Proceedings of the 2015 IEEE European Microwave Conference (EuMC), Paris, France, 7–10 September 2015; pp. 430–433. [Google Scholar]
- RO3000® Laminate Data Sheet RO3003—RO3006—RO3010—RO3035 2024, Rogers Corporation. Available online: www.rogerscorp.com (accessed on 4 September 2025).
- Pozar, D.M. Microwave Engineering, 4th ed.; Wiley: Hoboken, NJ, USA, 2012; ISBN 978-0-470-63155-3. [Google Scholar]
- Bertl, S.; Kirschner, A.; Detlefsen, J. Suppression of Grating Lobes for MMW Sparse Array Setups. Adv. Radio Sci. 2011, 9, 67–71. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferro, L.; Li, C.; Cardillo, E. Design Considerations for a 120 GHz MIMO Sparse Radar Array Based on SISO Integrated Circuits. Sensors 2025, 25, 5622. https://doi.org/10.3390/s25185622
Ferro L, Li C, Cardillo E. Design Considerations for a 120 GHz MIMO Sparse Radar Array Based on SISO Integrated Circuits. Sensors. 2025; 25(18):5622. https://doi.org/10.3390/s25185622
Chicago/Turabian StyleFerro, Luigi, Changzhi Li, and Emanuele Cardillo. 2025. "Design Considerations for a 120 GHz MIMO Sparse Radar Array Based on SISO Integrated Circuits" Sensors 25, no. 18: 5622. https://doi.org/10.3390/s25185622
APA StyleFerro, L., Li, C., & Cardillo, E. (2025). Design Considerations for a 120 GHz MIMO Sparse Radar Array Based on SISO Integrated Circuits. Sensors, 25(18), 5622. https://doi.org/10.3390/s25185622