Advanced Deep Learning Models for Melanoma Diagnosis in Computer-Aided Skin Cancer Detection
Abstract
:1. Introduction
- Reconstruction of the entire input image using a custom-designed intensity-adjustment-based interpolation technique after eliminating hairlines (Section 3.2.1).
- Application of a context aggregation deep learning network to improve image contrast, as well as rescaling and standardization of images to fit the training models during the learning procedure (Section 3.2.2).
- Design of a novel deep neural network incorporating atrous dilated convolutions to extract lesion segmentation maps with high spatial resolution (Section 3.3).
- Design of a novel deep convolutional neural network (N-DCNN) to calculate the high- to low-level features of a lesion to distinguish benign and malignant lesions (Section 3.4).
- Performance analysis of the classification model utilizing unprocessed (raw images) and preprocessed (enhanced images) datasets.
2. Related Studies
3. Materials and Methods
3.1. Dataset Preparation
3.2. Preprocessing
3.2.1. Hairlines Removal Method
3.2.2. Contrast Enhancement Model
3.3. Lesion Segmentation Model
3.4. Classification Model
4. Results
- For the convolution layer, the parameters were calculated as
- At the fully connected layer, the parameters are calculated as
- For the batch normalization layer,
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
N-DCNN | Novel deep convolutional neural network |
ISIC | International skin imaging collaboration |
ReLU | Rectified linear unit |
BN | Batch normalization |
MCAN | Multiscale context aggregation network |
ACNN | Atrous convolutional neural network |
References
- Massey University of New Zealand. Environmental Health Indicators New Zealand. Available online: https://www.ehinz.ac.nz/indicators/uv-exposure/melanoma/ (accessed on 10 July 2020).
- Autier, P.; for Epimel, D.; Eortc Melanoma Cooperative Group, J.F. Influence of sun exposures during childhood and during adulthood on melanoma risk. Int. J. Cancer 1998, 77, 533–537. [Google Scholar] [CrossRef]
- Schadendorf, D.; Fisher, D.E.; Garbe, C.; Gershenwald, J.E.; Grob, J.J.; Halpern, A.; Herlyn, M.; Marchetti, M.A.; McArthur, G.; Ribas, A.; et al. Melanoma. Nat. Rev. Dis. Prim. 2015, 1, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Stern, R.S. Prevalence of a history of skin cancer in 2007: Results of an incidence-based model. Arch. Dermatol. 2010, 146, 279–282. [Google Scholar] [CrossRef]
- Cokkinides, V.; Albano, J.; Samuels, A.; Ward, M.; Thum, J. American Cancer Society: Cancer Facts and Figures; American Cancer Society: Atlanta, GA, USA, 2005. [Google Scholar]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.; Singh, D.; Laversanne, M.; Vignat, J.; Vaccarella, S.; Meheus, F.; Cust, A.E.; de Vries, E.; Whiteman, D.C.; Bray, F. Global burden of cutaneous melanoma in 2020 and projections to 2040. JAMA Dermatol. 2022, 158, 495–503. [Google Scholar] [CrossRef]
- Di Leo, G.; Paolillo, A.; Sommella, P.; Fabbrocini, G. Automatic diagnosis of melanoma: A software system based on the 7-point check-list. In Proceedings of the 43rd Hawaii International Conference on System Sciences, Honolulu, HI, USA, 5–8 January 2010. [Google Scholar]
- Guy, G.P., Jr.; Ekwueme, D.U.; Tangka, F.K.; Richardson, L.C. Melanoma treatment costs: A systematic review of the literature, 1990–2011. Am. J. Prev. Med. 2012, 43, 537–545. [Google Scholar] [CrossRef]
- Salido, J.A.; Ruiz, C., Jr. Hair artifact removal and skin lesion segmentation of dermoscopy images. Asian J. Pharm. Clin. Res. 2018, 11, 36–39. [Google Scholar] [CrossRef]
- Zaqout, I.S. An efficient block-based algorithm for hair removal in dermoscopic images. Comput. Opt. 2017, 41, 521–527. [Google Scholar] [CrossRef]
- Kasmi, R.; Mokrani, K.; Rader, R.; Cole, J.; Stoecker, W. Biologically inspired skin lesion segmentation using a geodesic active contour technique. Ski. Res. Technol. 2016, 22, 208–222. [Google Scholar] [CrossRef] [PubMed]
- Abbas, Q.; Garcia, I.F.; Emre Celebi, M.; Ahmad, W. A feature-preserving hair removal algorithm for dermoscopy images. Ski. Res. Technol. 2013, 19, e27–e36. [Google Scholar] [CrossRef]
- Garcia-Arroyo, J.L.; Garcia-Zapirain, B. Segmentation of skin lesions in dermoscopy images using fuzzy classification of pixels and histogram thresholding. Comput. Methods Programs Biomed. 2019, 168, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Zghal, N.S.; Derbel, N. Melanoma skin cancer detection based on image processing. Curr. Med. Imaging 2020, 16, 50–58. [Google Scholar] [CrossRef]
- Amin, J.; Sharif, A.; Gul, N.; Anjum, M.A.; Nisar, M.W.; Azam, F.; Bukhari, S.A.C. Integrated design of deep features fusion for localization and classification of skin cancer. Pattern Recognit. Lett. 2020, 131, 63–70. [Google Scholar] [CrossRef]
- Garg, S.; Jindal, B. Skin lesion segmentation using k-mean and optimized fire fly algorithm. Multimed. Tools Appl. 2021, 80, 7397–7410. [Google Scholar] [CrossRef]
- Khan, M.A.; Sharif, M.; Akram, T.; Damaševičius, R.; Maskeliūnas, R. Skin lesion segmentation and multiclass classification using deep learning features and improved moth flame optimization. Diagnostics 2021, 11, 811. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Hong, S.; Noh, H.; Han, B. Decoupled deep neural network for semi-supervised semantic segmentation. arXiv 2015, arXiv:1506.04924. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef]
- Sáez, A.; Sánchez-Monedero, J.; Gutiérrez, P.A.; Hervás-Martínez, C. Machine learning methods for binary and multiclass classification of melanoma thickness from dermoscopic images. IEEE Trans. Med. Imaging 2015, 35, 1036–1045. [Google Scholar] [CrossRef] [PubMed]
- Gautam, D.; Ahmed, M.; Meena, Y.K.; Ul Haq, A. Machine learning—Based diagnosis of melanoma using macro images. Int. J. Numer. Methods Biomed. Eng. 2018, 34, e2953. [Google Scholar] [CrossRef]
- Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Maglogiannis, I.; Pavlopoulos, S.; Koutsouris, D. An integrated computer supported acquisition, handling, and characterization system for pigmented skin lesions in dermatological images. IEEE Trans. Inf. Technol. Biomed. 2005, 9, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Jaworek-Korjakowska, J.; Kłeczek, P. Automatic classification of specific melanocytic lesions using artificial intelligence. BioMed Res. Int. 2016, 2016, 8934242. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, Y.; Otomo, Y.; Ogata, Y.; Nakamura, Y.; Fujita, R.; Ishitsuka, Y.; Watanabe, R.; Okiyama, N.; Ohara, K.; Fujimoto, M. Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. Br. J. Dermatol. 2019, 180, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Masood, A.; Ali Al-Jumaily, A. Computer aided diagnostic support system for skin cancer: A review of techniques and algorithms. Int. J. Biomed. Imaging 2013, 2013, 323268. [Google Scholar] [CrossRef] [PubMed]
- Brinker, T.J.; Hekler, A.; Utikal, J.S.; Grabe, N.; Schadendorf, D.; Klode, J.; Berking, C.; Steeb, T.; Enk, A.H.; Von Kalle, C. Skin cancer classification using convolutional neural networks: Systematic review. J. Med. Internet Res. 2018, 20, e11936. [Google Scholar] [CrossRef] [PubMed]
- Premaladha, J.; Ravichandran, K. Novel approaches for diagnosing melanoma skin lesions through supervised and deep learning algorithms. J. Med. Syst. 2016, 40, 96. [Google Scholar] [CrossRef] [PubMed]
- Popescu, D.; El-Khatib, M.; El-Khatib, H.; Ichim, L. New Trends in Melanoma Detection Using Neural Networks: A Systematic Review. Sensors 2022, 22, 496. [Google Scholar] [CrossRef]
- Jones, O.; Matin, R.; van der Schaar, M.; Bhayankaram, K.P.; Ranmuthu, C.; Islam, M.; Behiyat, D.; Boscott, R.; Calanzani, N.; Emery, J.; et al. Artificial intelligence and machine learning algorithms for early detection of skin cancer in community and primary care settings: A systematic review. Lancet Digit. Health 2022, 4, e466–e476. [Google Scholar] [CrossRef]
- Jeyakumar, J.P.; Jude, A.; Priya Henry, A.G.; Hemanth, J. Comparative Analysis of Melanoma Classification Using Deep Learning Techniques on Dermoscopy Images. Electronics 2022, 11, 2918. [Google Scholar] [CrossRef]
- Alam, T.M.; Shaukat, K.; Khan, W.A.; Hameed, I.A.; Almuqren, L.A.; Raza, M.A.; Aslam, M.; Luo, S. An Efficient Deep Learning-Based Skin Cancer Classifier for an Imbalanced Dataset. Diagnostics 2022, 12, 2115. [Google Scholar] [CrossRef] [PubMed]
- Bakator, M.; Radosav, D. Deep learning and medical diagnosis: A review of literature. Multimodal Technol. Interact. 2018, 2, 47. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Dorj, U.O.; Lee, K.K.; Choi, J.Y.; Lee, M. The skin cancer classification using deep convolutional neural network. Multimed. Tools Appl. 2018, 77, 9909–9924. [Google Scholar] [CrossRef]
- Mahbod, A.; Schaefer, G.; Wang, C.; Ecker, R.; Ellinge, I. Skin lesion classification using hybrid deep neural networks. In Proceedings of the ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 1229–1233. [Google Scholar]
- Gouda, W.; Sama, N.U.; Al-Waakid, G.; Humayun, M.; Jhanjhi, N.Z. Detection of skin cancer based on skin lesion images using deep learning. Healthcare 2022, 10, 1183. [Google Scholar] [CrossRef] [PubMed]
- Afza, F.; Sharif, M.; Mittal, M.; Khan, M.A.; Hemanth, D.J. A hierarchical three-step superpixels and deep learning framework for skin lesion classification. Methods 2022, 202, 88–102. [Google Scholar] [CrossRef] [PubMed]
- Sloan Kettering Cancer Center. The International Skin Imaging Collaboration. 2019. Available online: https://www.isic-archive.com/#!/topWithHeader/wideContentTop/main/ (accessed on 13 February 2019).
- Tschandl, P.; Rosendahl, C.; Kittler, H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 2018, 5, 180161. [Google Scholar] [CrossRef] [PubMed]
- Rotemberg, V.; Kurtansky, N.; Betz-Stablein, B.; Caffery, L.; Chousakos, E.; Codella, N.; Combalia, M.; Dusza, S.; Guitera, P.; Gutman, D.; et al. A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Sci. Data 2021, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; GholamHosseini, H.; Sinha, R. Hairlines removal and low contrast enhancement of melanoma skin images using convolutional neural network with aggregation of contextual information. Biomed. Signal Process. Control 2022, 76, 103653. [Google Scholar] [CrossRef]
- Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv 2020, arXiv:2010.16061. [Google Scholar]
- Tharwat, A. Classification assessment methods. Appl. Comput. Inf. 2021, 17, 168–192. [Google Scholar] [CrossRef]
- Nasiri, S.; Helsper, J.; Jung, M.; Fathi, M. DePicT Melanoma Deep-CLASS: A deep convolutional neural networks approach to classify skin lesion images. BMC Bioinform. 2020, 21, 84. [Google Scholar] [CrossRef]
- Hasan, M.R.; Fatemi, M.I.; Monirujjaman Khan, M.; Kaur, M.; Zaguia, A. Comparative Analysis of Skin Cancer (Benign vs. Malignant) Detection Using Convolutional Neural Networks. J. Healthc. Eng. 2021, 2021, 5895156. [Google Scholar] [CrossRef] [PubMed]
- Brinker, T.J.; Hekler, A.; Enk, A.H.; Klode, J.; Hauschild, A.; Berking, C.; Schilling, B.; Haferkamp, S.; Schadendorf, D.; Holland-Letz, T.; et al. Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. Eur. J. Cancer 2019, 113, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Kwasigroch, A.; Grochowski, M.; Mikołajczyk, A. Neural architecture search for skin lesion classification. IEEE Access 2020, 8, 9061–9071. [Google Scholar] [CrossRef]
- Karki, S.; Kulkarni, P.; Stranieri, A. Melanoma classification using EfficientNets and Ensemble of models with different input resolution. In Proceedings of the 2021 Australasian Computer Science Week Multiconference, Dunedin, New Zealand, 1–5 February 2021; pp. 1–5. [Google Scholar]
- Ha, Q.; Liu, B.; Liu, F. Identifying melanoma images using efficientnet ensemble: Winning solution to the siim-isic melanoma classification challenge. arXiv 2020, arXiv:2010.05351. [Google Scholar]
- O’Brien, M.; Bukowski, J.; Hager, G.; Pezeshk, A.; Unberath, M. Evaluating neural network robustness for melanoma classification using mutual information. In Proceedings of the Medical Imaging 2022: Image Processing, San Diego, CA, USA, 20–24 February 2022; Volume 12032, pp. 173–177. [Google Scholar]
- Bajwa, M.N.; Muta, K.; Malik, M.I.; Siddiqui, S.A.; Braun, S.A.; Homey, B.; Dengel, A.; Ahmed, S. Computer-aided diagnosis of skin diseases using deep neural networks. Appl. Sci. 2020, 10, 2488. [Google Scholar] [CrossRef]
- Dildar, M.; Akram, S.; Irfan, M.; Khan, H.U.; Ramzan, M.; Mahmood, A.R.; Alsaiari, S.A.; Saeed, A.H.M.; Alraddadi, M.O.; Mahnashi, M.H. Skin cancer detection: A review using deep learning techniques. Int. J. Environ. Res. Public Health 2021, 18, 5479. [Google Scholar] [CrossRef] [PubMed]
- Rigel, D.S.; Carucci, J.A. Malignant melanoma: Prevention, early detection, and treatment in the 21st century. CA Cancer J. Clin. 2000, 50, 215–236. [Google Scholar] [CrossRef]
Parameter | Values |
---|---|
Input image size | |
Batch size | 16 |
Learning parameter, | 0.01 |
L2 regularization | 0.005 |
Momentum, | 0.9 |
Epochs | 30 |
Loss function | weighted cross-entropy |
Optimiser | SGDM |
Parameter | Values |
---|---|
Learning algorithm | SGDM |
Learning rate | 0.001 |
Mini-batch size | 32 |
Epochs | 100 |
Activation function | Leaky ReLU |
Data augmentation | Random oversampling, rotation, |
translation, and scaling | |
Momentum | 0.99 |
Regularization | 0.0005 |
Classes | Training Samples | Augmented Training | Validation Samples | Test Samples | Total Samples |
---|---|---|---|---|---|
MEL | 4052 | 4965 | 579 | 1158 | 5789 |
BEN | 4965 | 4965 | 709 | 1419 | 7093 |
Total | 9017 | 9930 | 1288 | 2577 | 12,882 |
Studies | Dataset | No. of Images | ACC% | PRE% | REC% | SPE% | F1 Score% | Parameters (Millions) |
---|---|---|---|---|---|---|---|---|
S. Nasiri [50] | ISIC | 1346 | 75.00 | 77.00 | 73.00 | 78.00 | 75.00 | ― |
M.R.Hasan [51] | ISIC | 6594 | 93.18 | ― | ― | ― | ― | 134.2 M |
T.J Brinker [52] | ISIC | 12,378 | ― | 74.10 | 87.50 | 60.00 | ― | >23 M |
Kwasigroch, A. [53] | ISIC | 13,600 | 77.00 | ― | ― | ― | ― | 7.18 M |
Proposed | ISIC | 12,882 | 90.92 | 91.12 | 92.29 | 89.29 | 91.70 | 3.32 M |
Studies | Dataset | Duplicates Removed | Model | AUC |
---|---|---|---|---|
S. Karki [54] | 2020 | NO | Ensemble Nets | 94.11 |
Q. Ha [55] | 2020 | NO | Ensemble Efficient-Net | 94.90 |
M. O’Brien [56] | 2020 | NO | DNN | 59.1 |
Proposed | 2020 | Yes | N-DCNN | 96.42 |
Approach | ACC | PRE | REC | SPE | F1 Score | Parameters | Test Time |
---|---|---|---|---|---|---|---|
ResNet18 | 85.32 | 84.86 | 88.54 | 81.54 | 86.66 | 11 M | 171 s |
Inceptionv3 | 90.50 | 92.82 | 90.52 | 90.48 | 91.66 | 24 M | 260 s |
Xception | 82.7 | 80.0 | 79.8 | 81.9 | 82.1 | 22.8 M | 202 s |
N-DCNN | 90.92 | 91.12 | 92.29 | 89.29 | 91.70 | 3.32 M | 76 s |
Data | ACC | PRE | REC | SPE | F1 Score | Execution Time (s) | Per Image Test Time (s) |
---|---|---|---|---|---|---|---|
Raw data | 90.92 | 92.11 | 92.29 | 89.29 | 91.70 | 76 | 1.8 |
Preprocessed data | 93.40 | 93.45 | 94.51 | 92.08 | 93.98 | 17 | 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaur, R.; GholamHosseini, H.; Lindén, M. Advanced Deep Learning Models for Melanoma Diagnosis in Computer-Aided Skin Cancer Detection. Sensors 2025, 25, 594. https://doi.org/10.3390/s25030594
Kaur R, GholamHosseini H, Lindén M. Advanced Deep Learning Models for Melanoma Diagnosis in Computer-Aided Skin Cancer Detection. Sensors. 2025; 25(3):594. https://doi.org/10.3390/s25030594
Chicago/Turabian StyleKaur, Ranpreet, Hamid GholamHosseini, and Maria Lindén. 2025. "Advanced Deep Learning Models for Melanoma Diagnosis in Computer-Aided Skin Cancer Detection" Sensors 25, no. 3: 594. https://doi.org/10.3390/s25030594
APA StyleKaur, R., GholamHosseini, H., & Lindén, M. (2025). Advanced Deep Learning Models for Melanoma Diagnosis in Computer-Aided Skin Cancer Detection. Sensors, 25(3), 594. https://doi.org/10.3390/s25030594