Biomedical Signal Processing and Health Monitoring Based on Sensors
Acknowledgments
Conflicts of Interest
References
- Khare, S.K.; Gaikwad, N.; Bokde, N.D. An intelligent motor imagery detection system using electroencephalography with adaptive wavelets. Sensors 2022, 22, 8128. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, Y.; Du, J.; Zhao, R.; Xu, K.; Zhang, L.; She, Y. Feature pyramid networks and long short-term memory for EEG feature map-based emotion recognition. Sensors 2023, 23, 1622. [Google Scholar] [CrossRef] [PubMed]
- Khaleghi, N.; Hashemi, S.; Ardabili, S.Z.; Sheykhivand, S.; Danishvar, S. Salient arithmetic data extraction from brain activity via an improved deep network. Sensors 2023, 23, 9351. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, M.; Mohajelin, F.; Khaleghi, N.; Sheykhivand, S.; Danishvar, S. An Automatic Lie Detection Model Using EEG Signals Based on the Combination of Type 2 Fuzzy Sets and Deep Graph Convolutional Networks. Sensors 2024, 24, 3598. [Google Scholar] [CrossRef] [PubMed]
- Peivandi, M.; Ardabili, S.Z.; Sheykhivand, S.; Danishvar, S. Deep learning for detecting multi-level driver fatigue using physiological signals: A comprehensive approach. Sensors 2023, 23, 8171. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Muthusamy, K.; Chen, J.; Fang, X. Scented Solutions: Examining the Efficacy of Scent Interventions in Mitigating Driving Fatigue. Sensors 2024, 24, 2384. [Google Scholar] [CrossRef] [PubMed]
- Ardabili, S.Z.; Bahmani, S.; Lahijan, L.Z.; Khaleghi, N.; Sheykhivand, S.; Danishvar, S. A novel approach for automatic detection of driver fatigue using EEG signals based on graph convolutional networks. Sensors 2024, 24, 364. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.H.; Yoon, H. Convolutional neural networks for the real-time monitoring of vital signs based on impulse radio ultrawide-band radar during sleep. Sensors 2023, 23, 3116. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-G.; Song, Y.D.; Lee, E.C. Experimental verification of the possibility of reducing photoplethysmography measurement time for stress index calculation. Sensors 2023, 23, 5511. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, S.; Ni, D.; Wei, Z.; Yang, K.; Jin, S.; Huang, G.; Liang, Z.; Zhang, L.; Li, L.; et al. Multimodal sensing for depression risk detection: Integrating audio, video, and text data. Sensors 2024, 24, 3714. [Google Scholar] [CrossRef]
- Oliosi, E.; Júlio, A.; Probst, P.; Silva, L.; Vilas-Boas, J.P.; Pinheiro, A.R.; Gamboa, H. Exploring the Real-Time Variability and Complexity of Sitting Patterns in Office Workers with Non-Specific Chronic Spinal Pain and Pain-Free Individuals. Sensors 2024, 24, 4750. [Google Scholar] [CrossRef] [PubMed]
- Radomski, A.; Teichmann, D. On-Road Evaluation of Unobtrusive In-Car Respiration Monitoring. Sensors 2024, 24, 4500. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.; Choi, S.H. Closed-Loop Auditory Stimulation to Guide Respiration: Preliminary Study to Evaluate the Effect on Time Spent in Sleep Initiation during a Nap. Sensors 2023, 23, 6468. [Google Scholar] [CrossRef] [PubMed]
- Furtado, E.C.S.; De Azevedo, Y.S.; Galhardo, D.d.R.; Miranda, I.P.C.; Oliveira, M.E.C.; das Neves, P.F.M.; Monte, L.B.; Nunes, E.F.C.; Ferreira, E.A.G.; Callegari, B.; et al. Influence of Gestational Age on Pelvic Floor Muscle Activity, Plantar Contact, and Functional Mobility in High-Risk Pregnant Women: A Cross-Sectional Study. Sensors 2024, 24, 4615. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-Vega, Z.T.; de Quiros, M.B.; Elting, J.W.J.; Sival, D.A.; Maurits, N.M. Instrumented gait classification using meaningful features in patients with impaired coordination. Sensors 2023, 23, 8410. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.H.; Yoon, H.; Baek, H.J.; Long, X. Biomedical Signal Processing and Health Monitoring Based on Sensors. Sensors 2025, 25, 641. https://doi.org/10.3390/s25030641
Choi SH, Yoon H, Baek HJ, Long X. Biomedical Signal Processing and Health Monitoring Based on Sensors. Sensors. 2025; 25(3):641. https://doi.org/10.3390/s25030641
Chicago/Turabian StyleChoi, Sang Ho, Heenam Yoon, Hyun Jae Baek, and Xi Long. 2025. "Biomedical Signal Processing and Health Monitoring Based on Sensors" Sensors 25, no. 3: 641. https://doi.org/10.3390/s25030641
APA StyleChoi, S. H., Yoon, H., Baek, H. J., & Long, X. (2025). Biomedical Signal Processing and Health Monitoring Based on Sensors. Sensors, 25(3), 641. https://doi.org/10.3390/s25030641