Comparison of Total Hemispherical Reflectance and Emittance Values Between Metformin Extended-Release Tablets Stored Under Ambient and Stress Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Tablets
2.2. Reflectance and Emittance Measurements
2.3. Statistical Analyses
3. Results
3.1. Characteristics of the Tablets
3.2. Total Hemispherical Reflectance Analysis
3.3. Emittance Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of Type 2 Diabetes—Global Burden of Disease and Forecasted Trends. J. Epidemiol. Glob. Health 2020, 10, 107–111. [Google Scholar] [CrossRef]
- World Health Organization. The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 25 January 2025).
- Lamoia, T.E.; Shulman, G.I. Cellular and Molecular Mechanisms of Metformin Action. Endocr. Rev. 2021, 42, 77–96. [Google Scholar] [CrossRef] [PubMed]
- Remelli, F.; Ceresini, M.G.; Trevisan, C.; Noale, M.; Volpato, S. Prevalence and Impact of Polypharmacy in Older Patients with Type 2 Diabetes. Aging Clin. Exp. Res. 2022, 34, 1969–1983. [Google Scholar] [CrossRef] [PubMed]
- Vlieland, N.D.; van den Bemt, B.J.F.; Bekker, C.L.; Bouvy, M.L.; Egberts, T.C.G.; Gardarsdottir, H. Older Patients’ Compliance with Drug Storage Recommendations. Drugs Aging 2018, 35, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Sino, C.G.M.; Sietzema, M.; Egberts, T.C.G.; Schuurmans, M.J. Medication Management Capacity in Relation to Cognition and Self-Management Skills in Older People on Polypharmacy. J. Nutr. Health Aging 2014, 18, 44–49. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, L.; Zhong, C.; Huang, S. Factors influencing the attention to home storage of medicines in China. BMC Public Health. 2019, 19, 833. [Google Scholar] [CrossRef]
- Mira, J.J.; Lorenzo, S.; Guilabert, M.; Navarro, I.; Pérez-Jover, V. A Systematic Review of Patient Medication Error on Self-Administering Medication at Home. Expert Opin. Drug Saf. 2015, 14, 815–838. [Google Scholar] [CrossRef] [PubMed]
- Janga, K.Y.; King, T.; Ji, N.; Sarabu, S.; Shadambikar, G.; Sawant, S.; Xu, P.; Repka, M.A.; Murthy, S.N. Photostability Issues in Pharmaceutical Dosage Forms and Photostabilization. AAPS PharmSciTech 2018, 19, 48–59. [Google Scholar] [CrossRef]
- Sarecka-Hujar, B.; Meisner, M.; Szulc-Musioł, B.; Duda, P. Directional Hemispherical Reflectance as a Quick Method for Analysis of Degradation Processes in Commercial Effervescent Tablets. Eng. Proc. 2022, 31, 23. [Google Scholar] [CrossRef]
- Meisner, M.; Sarecka-Hujar, B. Assessment of Directional-Hemispherical Reflectance of Tablets with Cefuroxime during Storage under Elevated Temperature and Ultraviolet Radiation. Sensors 2024, 24, 630. [Google Scholar] [CrossRef] [PubMed]
- Wilczyński, S.; Koprowski, R.; Błońska-Fajfrowska, B. Directional Reflectance Analysis for Identifying Counterfeit Drugs: Preliminary Study. J. Pharm. Biomed. Anal. 2016, 124, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Albatici, R.; Passerini, F.; Tonelli, A.M.; Gialanella, S. Assessment of the Thermal Emissivity Value of Building Materials Using an Infrared Thermovision Technique Emissometer. Energy Build. 2013, 66, 33–40. [Google Scholar] [CrossRef]
- Monchau, J.-P. Emissivity Measurement for Infrared Thermography and Radiative Exchanges. In Proceedings of the QUIRT’2022: 16th Quantitative InfraRed Thermography Conference, Paris, France, 4–8 July 2022; pp. 1–10. [Google Scholar]
- Nicodemus, F.E. Directional Reflectance and Emissivity of an Opaque Surface. Appl. Opt. IP 1965, 4, 767–774. [Google Scholar] [CrossRef]
- Jafari Ghalekohneh, S.; Du, C.; Zhao, B. Controlling the Contrast between Absorptivity and Emissivity in Nonreciprocal Thermal Emitters. Appl. Phys. Lett. 2024, 124, 101104. [Google Scholar] [CrossRef]
- Meisner, M.; Szulc-Musioł, B.; Sarecka-Hujar, B. Novel spectral data for effervescent tablets according to shelf life. Acta Pol. Pharm. 2024, 81, 675–684. [Google Scholar] [CrossRef]
- Wen, C.D.; Mudawar, I. Modeling the Effects of Surface Roughness on the Emissivity of Aluminum Alloys. Int. J. Heat Mass Transf. 2006, 49, 4279–4289. [Google Scholar] [CrossRef]
- Wen, C.D.; Mudawar, I. Emissivity Characteristics of Polished Aluminum Alloy Surfaces and Assessment of Multispectral Radiation Thermometry (MRT) Emissivity Models. Int. J. Heat Mass Transf. 2005, 48, 1316–1329. [Google Scholar] [CrossRef]
- Li, C.L.; Martini, L.G.; Ford, J.L.; Roberts, M. The Use of Hypromellose in Oral Drug Delivery. J. Pharm. Pharmacol. 2010, 57, 533–546. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.R.; Park, H.J.; Park, J.S.; Park, D.W.; Ho, M.J.; Kim, D.Y.; Lee, H.C.; Kim, E.J.; Song, W.H.; Park, J.S.; et al. Montelukast Microsuspension with Hypromellose for Improved Stability and Oral Absorption. Int. J. Biol. Macromol. 2021, 183, 1732–1742. [Google Scholar] [CrossRef]
- Maggi, L.; Ochoa Machiste, E.; Fasani, E.; Albini, A.; Segale, L.; Conte, U. Photostability of Extended-Release Matrix Formulations. Eur. J. Pharm. Biopharm. 2003, 55, 99–105. [Google Scholar] [CrossRef]
- Darji, M.A.; Lalge, R.M.; Marathe, S.P.; Mulay, T.D.; Fatima, T.; Alshammari, A.; Lee, H.K.; Repka, M.A.; Narasimha Murthy, S. Excipient Stability in Oral Solid Dosage Forms: A Review. AAPS PharmSciTech 2018, 19, 12–26. [Google Scholar] [CrossRef] [PubMed]
- Narang, A.S.; Desai, D.; Badawy, S. Impact of Excipient Interactions on Solid Dosage Form Stability. Pharm. Res. 2012, 29, 2660–2683. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Suryanarayanan, R. Investigating the Influence of Excipients on the Stability of Levothyroxine Sodium Pentahydrate. Mol. Pharm. 2021, 18, 2683–2693. [Google Scholar] [CrossRef] [PubMed]
- Gumieniczek, A.; Lejwoda, K.; Data, N. Chemical Stability Study of H1 Antihistaminic Drugs from the First and the Second Generations, Diphenhydramine, Azelastine and Bepotastine, in Pure APIs and in the Presence of Two Excipients, Citric Acid and Polyvinyl Alcohol. Molecules 2022, 27, 8322. [Google Scholar] [CrossRef]
- Parmar, N.; Amin, S.; Singla, N.; Kohli, K. The Solution, Solid State Stability and Kinetic Investigation in Degradation Studies of Lercanidipine: Study of Excipients Compatibility of Lercanidipine. Pharm. Dev. Technol. 2012, 17, 730–740. [Google Scholar] [CrossRef] [PubMed]
Type of the Tablets | DHR Values for 20° Angle | p | ||
---|---|---|---|---|
IR Bands | Unexpired Day 0 | Stressed Day 20 | Expired | |
1.5–2.0 microns | 0.470 ± 0.012 | 0.477 ± 0.014 | 0.473 ± 0.016 | <0.001 |
2.0–3.5 microns | 0.236 ± 0.006 | 0.243 ± 0.009 | 0.242 ± 0.010 | <0.001 |
3.0–4.0 microns | 0.042 ± 0.007 | 0.046 ± 0.007 | 0.042 ± 0.008 | <0.001 |
4.0–5.0 microns | 0.108 ± 0.004 | 0.114 ± 0.006 | 0.113 ± 0.006 | <0.001 |
5.0–10.5 microns | 0.046 ± 0.002 | 0.047 ± 0.001 | 0.046 ± 0.001 | <0.001 |
10.5–21.0 microns | 0.038 ± 0.003 | 0.040 ± 0.002 | 0.040 ± 0.002 | <0.001 |
Type of the Tablets | DHR Values for 20° Angle | p | ||
---|---|---|---|---|
IR Bands | Unexpired Day 0 | Stressed Day 20 | Expired | |
1.5–2.0 microns | 0.470 ± 0.012 | 0.477 ± 0.014 | 0.473 ± 0.016 | <0.001 |
2.0–3.5 microns | 0.236 ± 0.006 | 0.243 ± 0.009 | 0.242 ± 0.010 | <0.001 |
3.0–4.0 microns | 0.042 ± 0.007 | 0.046 ± 0.007 | 0.042 ± 0.008 | <0.001 |
4.0–5.0 microns | 0.108 ± 0.004 | 0.114 ± 0.006 | 0.113 ± 0.006 | <0.001 |
5.0–10.5 microns | 0.046 ± 0.002 | 0.047 ± 0.001 | 0.046 ± 0.001 | <0.001 |
10.5–21.0 microns | 0.038 ± 0.003 | 0.040 ± 0.002 | 0.040 ± 0.002 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarecka-Hujar, B.; Meisner, M. Comparison of Total Hemispherical Reflectance and Emittance Values Between Metformin Extended-Release Tablets Stored Under Ambient and Stress Conditions. Sensors 2025, 25, 743. https://doi.org/10.3390/s25030743
Sarecka-Hujar B, Meisner M. Comparison of Total Hemispherical Reflectance and Emittance Values Between Metformin Extended-Release Tablets Stored Under Ambient and Stress Conditions. Sensors. 2025; 25(3):743. https://doi.org/10.3390/s25030743
Chicago/Turabian StyleSarecka-Hujar, Beata, and Michał Meisner. 2025. "Comparison of Total Hemispherical Reflectance and Emittance Values Between Metformin Extended-Release Tablets Stored Under Ambient and Stress Conditions" Sensors 25, no. 3: 743. https://doi.org/10.3390/s25030743
APA StyleSarecka-Hujar, B., & Meisner, M. (2025). Comparison of Total Hemispherical Reflectance and Emittance Values Between Metformin Extended-Release Tablets Stored Under Ambient and Stress Conditions. Sensors, 25(3), 743. https://doi.org/10.3390/s25030743