A Highly Sensitive TDLAS-Based Water Vapor Isotopes Sensor Using a Quantum Cascade Laser
Abstract
:1. Introduction
2. Detection Principle and Absorption Line Selection
2.1. Isotopic Abundance Measurements
2.2. Absorption Line Selection
3. Sensor Configuration
3.1. Experimental Setup
3.2. Optimization
4. Sensor Performance
4.1. Calibration-Free Ability Evaluation by Measuring Concentration-Calibrated Methane Gas
4.2. Long-Term Performance of Water Isotopes
4.3. Field Applications for Atmospheric Water Isotopic Abundance Detection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Z.; Bao, Y.; Thompson, L.G.; Mosley-Thompson, E.; Tabor, C.; Zhang, G.J.; Yan, M.; Lofverstrom, M.; Montanez, I.; Oster, J. Tropical mountain ice core δ18O: A Goldilocks indicator for global temperature change. Sci. Adv. 2023, 9, 6725. [Google Scholar] [CrossRef] [PubMed]
- Arshad, Z.; Bang, T.H.; Kim, M.-S.; Shin, K.-H.; Park, H.-Y.; Hur, J. Quantitative source tracking for organic foulants in ultrafiltration membrane using stable isotope probing approach. Water Res. 2024, 249, 120989. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Du, Y.; Deng, Y.; Sun, X.; Xu, J.; Gan, Y.; Wang, Y. Identification of methane cycling pathways in Quaternary alluvial-lacustrine aquifers using multiple isotope and microbial indicators. Water Res. 2024, 250, 121027. [Google Scholar] [CrossRef] [PubMed]
- Reiss, L.; Mayr, C.; Pasda, K.; Joachimski, M.M.; Einwoegerer, T.; Haendel, M.; Maier, A. Seasonal climate variations during Marine Isotope Stages 3 and 2 inferred from high-resolution oxygen isotope ratios in horse tooth enamel from Lower Austria. J. Quat. Sci. 2024, 39, 531–546. [Google Scholar] [CrossRef]
- Valley, J.W.; Cole, D.R. Stable Isotope Geochemistry; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2019. [Google Scholar]
- Chen, F.; Zhang, M.; Wu, X.; Wang, S.; Argiriou, A.A.; Zhou, X.; Chen, J. A Stable Isotope Approach for Estimating the Contribution of Recycled Moisture to Precipitation in Lanzhou City, China. Water 2021, 13, 1783. [Google Scholar] [CrossRef]
- Hillaire-Marcel, C.; Kim, S.-T.; Landais, A.; Ghosh, P.; Assonov, S.; Lecuyer, C.; Blanchard, M.; Meijer, H.A.J.; Steen-Larsen, H.C. A stable isotope toolbox for water and inorganic carbon cycle studies. Nat. Rev. Earth Environ. 2021, 2, 699–719. [Google Scholar] [CrossRef]
- Räss, S.; Nyfeler, P.; Wheeler, P.; Price, W.; Leuenberger, M.C. Revision of an open-split-based dual-inlet system for elemental and isotope ratio mass spectrometers with a focus on clumped-isotope measurements. Atmos. Meas. Tech. 2023, 16, 4489–4505. [Google Scholar] [CrossRef]
- Noone, D. Pairing Measurements of the Water Vapor Isotope Ratio with Humidity to Deduce Atmospheric Moistening and Dehydration in the Tropical Midtroposphere. J. Clim. 2012, 25, 4476–4494. [Google Scholar] [CrossRef]
- Tobin, J.J.; van ’t Hoff, M.L.R.; Leemker, M.; van Dishoeck, E.F.; Paneque-Carreno, T.; Furuya, K.; Harsono, D.; Persson, M.V.; Cleeves, L.I.; Sheehan, P.D.; et al. Deuterium-enriched water ties planet-forming disks to comets and protostars. Nature 2023, 615, 227–230. [Google Scholar] [CrossRef]
- Murayama, J.; Yamanaka, C.; Hashizume, K.; Takigami, S. D-depleted water isotopic measurement with a miniaturized cavity ring-down spectrometer aiming for exploration of lunar water. Sens. Actuator A-Phys. 2022, 338, 113481. [Google Scholar] [CrossRef]
- Seltzer, A.M.; Bekaert, D.V. A unified method for measuring noble gas isotope ratios in air, water, and volcanic gases via dynamic mass spectrometry. Int. J. Mass Spectrom. 2022, 478, 116873. [Google Scholar] [CrossRef]
- Zahn, A.; Barth, V.; Pfeilsticker, K.; Platt, U. Deuterium, oxygen-18, and tritium as tracers for water vapour transport in the lower stratosphere and tropopause region. J. Atmos. Chem. 1998, 30, 25–47. [Google Scholar] [CrossRef]
- Maurya, A.S.; Rajendra, D.; Deshpande, M.; Shah, S.; Gupta, K. Revising The Protocols to Ensure Reliability, Cost Effectiveness and High Sample Throughput for Water Stable Isotope Analyses In Continuous Flow Mode using the Gasbench II. J. Surf. Eng. Mater. Adv. Technol. 2015, 4, 2249–8958. [Google Scholar]
- Santos, T.H.R.d.; Zucchi, M.d.R.; Lemaire, T.J.; Azevedo, A.E.G.D.; Viola, D.N. A statistical analysis of IRMS and CRDS methods in isotopic ratios of 2H/1H and 18O/16O in water. SN Appl. Sci. 2019, 1, 664. [Google Scholar] [CrossRef]
- Qiao, S.D.; He, Y.; Sun, H.Y.; Patimisco, P.; Sampaolo, A.; Spagnolo, V.; Ma, Y.F. Ultra-highly sensitive dual gases detection based on photoacoustic spectroscopy by exploiting a long-wave, high-power, wide-tunable, single-longitudinal-mode solid-state laser. Light Sci. Appl. 2024, 13, 100. [Google Scholar] [CrossRef]
- Ma, Y.F.; Qiao, S.D.; Wang, R.Q.; He, Y.; Fang, C.; Liang, T.T. A novel tapered quartz tuning fork-based laser spectroscopy sensing. Appl. Phys. Rev. 2024, 11, 041412. [Google Scholar] [CrossRef]
- Wang, R.; Qiao, S.; He, Y.; Ma, Y. Highly sensitive laser spectroscopy sensing based on a novel four-prong quartz tuning fork. Opto-Electron. Adv. 2025, 8, 240275. [Google Scholar] [CrossRef]
- Lang, Z.T.; Qiao, S.D.; He, Y.; Ma, Y.F. Disturbance-immune, fast response LITES gas sensor based on out-plane vibration mode employing micro Fabry-Perot cavity with heterodyne phase demodulation. Sens. Actuator B-Chem. 2024, 419, 136412. [Google Scholar] [CrossRef]
- Zhang, C.; He, Y.; Qiao, S.D.; Liu, Y.H.; Ma, Y.F. High-sensitivity trace gas detection based on differential Helmholtz photoacoustic cell with dense spot pattern. Photoacoustics 2024, 38, 100634. [Google Scholar] [CrossRef]
- He, Y.; Wang, Y.; Qiao, S.; Duan, X.; Qi, H.; Ma, Y. Hydrogen-enhanced light-induced thermoelastic spectroscopy sensing. Photonics Res. 2025, 13, 194–200. [Google Scholar] [CrossRef]
- Liu, Y.H.; Qiao, S.D.; Fang, C.; He, Y.; Sun, H.Y.; Liu, J.; Ma, Y.F. A highly sensitive LITES sensor based on a multi-pass cell with dense spot pattern and a novel quartz tuning fork with low frequency. Opto-Electron. Adv. 2024, 7, 230230. [Google Scholar] [CrossRef]
- Wang, K.; Shao, L.; Chen, J.; Wang, G.; Liu, K.; Tan, T.; Mei, J.; Chen, W.; Gao, X. A Dual-Laser Sensor Based on Off-Axis Integrated Cavity Output Spectroscopy and Time-Division Multiplexing Method. Sensors 2020, 20, 6192. [Google Scholar] [CrossRef] [PubMed]
- Walker, S.A.; Azetsu-Scott, K.; Normandeau, C.; Kelley, D.E.; Friedrich, R.; Newton, R.; Schlosser, P.; McKay, J.L.; Abdi, W.; Kerrigan, E.; et al. Oxygen isotope measurements of seawater (H218O/H216O): A comparison of cavity ring-down spectroscopy (CRDS) and isotope ratio mass spectrometry (IRMS). Limnol. Oceanogr. Meth. 2016, 14, 31–38. [Google Scholar] [CrossRef]
- Abe, H.; Amano, M.; Hashiguchi, K.; Lisak, D.; Honda, S.; Miyake, T. Improvement of spectral resolution in a miniaturized trace-moisture sensor using cavity ring-down spectroscopy: Performance evaluation using a trace-moisture standard in He. Sens. Actuator A-Phys. 2023, 351, 114146. [Google Scholar] [CrossRef]
- Weissbach, T.; Kluge, T.; Affolter, S.; Leuenberger, M.C.; Vonhof, H.; Riechelmann, D.F.C.; Fohlmeister, J.; Juhl, M.-C.; Hemmer, B.; Wu, Y.; et al. Constraints for precise and accurate fluid inclusion stable isotope analysis using water-vapour saturated CRDS techniques. Chem. Geol. 2023, 617, 121268. [Google Scholar] [CrossRef]
- Czuppon, G.; Ramsay, R.R.; Ozgenc, I.; Demeny, A.; Gwalani, L.G.; Rogers, K.; Eves, A.; Papp, L.; Palcsu, L.; Berkesi, M.; et al. Stable (H, O, C) and noble-gas (He and Ar) isotopic compositions from calcite and fluorite in the Speewah Dome, Kimberley Region, Western Australia: Implications for the conditions of crystallization and evidence for the influence of crustal-mantle fluid mixing. Mineral. Petrol. 2014, 108, 759–775. [Google Scholar]
- Shao, L.; Mei, J.; Chen, J.; Tan, T.; Wang, G.; Liu, K.; Gao, X. Recent advances and applications of off-axis integrated cavity output spectroscopy. Microwave Opt. Technol. Lett. 2023, 65, 1489–1505. [Google Scholar] [CrossRef]
- Hu, M.; Chen, B.; Yao, L.; Yang, C.; Chen, X.; Kan, R. A Fiber-Integrated CRDS Sensor for In-Situ Measurement of Dissolved Carbon Dioxide in Seawater. Sensors 2021, 21, 6436. [Google Scholar] [CrossRef]
- Hu, M.; Hu, M.; Wang, W.; Wang, Q. Wavelength-scanned all-fiber cavity ring-down gas sensing using an L-band active fiber loop. Appl. Phys. B 2022, 128, 30. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, D.; Mengpeng, H.U.; Wang, Q. Direct readout of mirror reflectivity for cavity-enhanced gas sensing using Pound-Drever-Hall signals. Opt. Lett. 2023, 48, 5996–5999. [Google Scholar] [CrossRef]
- Wang, X.; Jansen, H.G.; Duin, H.; Meijer, H.A.J. Measurement of δ18O and δ2H of water and ethanol in wine by Off-Axis Integrated Cavity Output Spectroscopy and Isotope Ratio Mass Spectrometry. Eur. Food Res. Technol. 2021, 247, 1899–1912. [Google Scholar] [CrossRef]
- Dong, L.; Tittel, F.K.; Li, C.; Sanchez, N.P.; Wu, H.; Zheng, C.; Yu, Y.; Sampaolo, A.; Griffin, R.J. Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing. Opt. Express 2016, 24, A528–A535. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Xu, L.; Zhou, S.; Zhang, L.; Li, J. Simultaneous Detection of Multiple Atmospheric Components Using an NIR and MIR Laser Hybrid Gas Sensing System. ACS Sens. 2020, 5, 3607–3616. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Feng, C.; Zhu, F.; Ye, S.; Schuessler, H.A. A sensitive methane sensor of a ppt detection level using a mid-infrared interband cascade laser and a long-path multipass cell. Sens. Actuator B-Chem. 2021, 334, 129641. [Google Scholar] [CrossRef]
- Webster, C.R.; Heymsfield, A.J. Water isotope ratios D/H, 18O/16O, 17O/16O in and out of clouds map dehydration pathways. Science 2003, 302, 1742–1745. [Google Scholar] [CrossRef]
- Dyroff, C.; Sanati, S.; Christner, E.; Zahn, A.; Balzer, M.; Bouquet, H.; McManus, J.B.; Gonzalez-Ramos, Y.; Schneider, M. Airborne in situ vertical profiling of HDO/H216O in the subtropical troposphere during the MUSICA remote sensing validation campaign. Atmos. Meas. Tech. 2015, 8, 2037–2049. [Google Scholar] [CrossRef]
- Le Barbu, T.; Vinogradov, I.; Durry, G.; Korablev, O.; Chassefière, E.; Bertaux, J.L. TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere. Adv. Space Res. 2006, 38, 718–725. [Google Scholar] [CrossRef]
- Durry, G.; Joly, L.; Le Barbu, T.; Parvitte, B.; Zeninari, V. Laser diode spectroscopy of the H2O isotopologues in the 2.64 μm region for the in situ monitoring of the Martian atmosphere. Infrared Physics & Technology 2008, 51, 229–235. [Google Scholar]
- Cui, X.J.; Chen, W.D.; Sigrist, M.W.; Fertein, E.; Flament, P.; De Bondt, K.; Mattielli, N. Analysis of the Stable Isotope Ratios (18O/16O, 17O/16O, and D/H) in Glacier Water by Laser Spectrometry. Anal. Chem. 2020, 92, 4512–4517. [Google Scholar] [CrossRef]
- Moyer, E.J.; Irion, F.W.; Yung, Y.L.; Gunson, M.R. ATMOS stratospheric deuterated water and implications for troposphere-stratosphere transport. Geophys. Res. Lett. 1996, 23, 2385–2388. [Google Scholar] [CrossRef]
- de Vries, A.J.; Aemisegger, F.; Pfahl, S.; Wernli, H. Stable water isotope signals in tropical ice clouds in the West African monsoon simulated with a regional convection-permitting model. Atmos. Chem. Phys. 2022, 22, 8863–8895. [Google Scholar] [CrossRef]
- Coplen, T.B. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun. Mass Spectrom. 2011, 25, 2538–2560. [Google Scholar] [CrossRef] [PubMed]
- Baertschi, P.J.E.; Letters, P.S. Absolute 18O content of standard mean ocean water. Earth Planet. Sci. Lett. 1976, 31, 341–344. [Google Scholar] [CrossRef]
- Gordon, I.E.; Rothman, L.S.; Hargreaves, E.R.; Hashemi, R.; Karlovets, E.V.; Skinner, F.M.; Conway, E.K.; Hill, C.; Kochanov, R.V.; Tan, Y.; et al. The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer 2021, 277, 107949. [Google Scholar] [CrossRef]
- Allan, D.W. Statistics of Atomic Frequency Standards. Proc. IEEE 1966, 54, 221–230. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. (n.d.). Global Network of Isotopes in Precipitation (GNIP). International Atomic Energy Agency. Available online: https://www.iaea.org/services/networks/gnip (accessed on 9 October 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, W.; Cao, N.; Ma, Y. A Highly Sensitive TDLAS-Based Water Vapor Isotopes Sensor Using a Quantum Cascade Laser. Sensors 2025, 25, 840. https://doi.org/10.3390/s25030840
Jin W, Cao N, Ma Y. A Highly Sensitive TDLAS-Based Water Vapor Isotopes Sensor Using a Quantum Cascade Laser. Sensors. 2025; 25(3):840. https://doi.org/10.3390/s25030840
Chicago/Turabian StyleJin, Wenling, Nailiang Cao, and Yufei Ma. 2025. "A Highly Sensitive TDLAS-Based Water Vapor Isotopes Sensor Using a Quantum Cascade Laser" Sensors 25, no. 3: 840. https://doi.org/10.3390/s25030840
APA StyleJin, W., Cao, N., & Ma, Y. (2025). A Highly Sensitive TDLAS-Based Water Vapor Isotopes Sensor Using a Quantum Cascade Laser. Sensors, 25(3), 840. https://doi.org/10.3390/s25030840