Identity Hides in Darkness: Learning Feature Discovery Transformer for Nighttime Person Re-Identification
Abstract
:1. Introduction
- A new Feature Discovery Transformer (FDT) is proposed for the nighttime person Re-ID task, which can better learn the identity features of pedestrians hidden in the dark. To the best of our knowledge, this is the first attempt via the “enhancement drop” solution for nighttime person Re-ID.
- The Frequency-wise Reconstruction Module (FRM) processes image frequencies, quantizing low frequencies to enhance global pedestrian features. Simultaneously, the Normalized Contrastive Loss (NCL) prevents high-frequency over-smoothing, capturing detailed high-frequency information to distinguish pedestrian identities.
- The Attribute Guide Module (AGM) is introduced to integrate auxiliary information, thereby enhancing the robustness of the extracted pedestrian features.
2. Related Works
2.1. Person Re-Identification
2.2. Nighttime Person Re-Identification
2.3. Auxiliary Information Learning
2.4. Image Processing Technologies for Nighttime Re-ID
3. Methodology
3.1. Transformer-Based Baseline
3.2. Attribute Guide Module
3.3. Feature Discovery Transformer Framework
4. Experiments
4.1. Datasets and Evaluation Metrics
4.2. Implementation Details
4.3. Comparisons with State-of-the-Art Methods
4.4. Ablation Study
4.5. Visualizations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, H.S.; Kim, M.; Jang, S.; Bae, H.B.; Lee, S. Multi-Granularity Aggregation with Spatiotemporal Consistency for Video-Based Person Re-Identification. Sensors 2024, 24, 2229. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yuan, X.; Yamasaki, T.; Lin, Y.; Xu, X.; Zeng, W. Re-identification= Retrieval+ Verification: Back to Essence and Forward with a New Metric. arXiv 2020, arXiv:2011.11506. [Google Scholar]
- Yuan, X.; Xu, X.; Wang, X.; Zhang, K.; Liao, L.; Wang, Z.; Lin, C.W. OSAP-Loss: Efficient Optimization of Average Precision via Involving Samples after Positive Ones towards Remote Sensing Image Retrieval. CAAI Trans. Intell. Technol. 2023, 8, 1191–1212. [Google Scholar] [CrossRef]
- Asperti, A.; Fiorilla, S.; Orsini, L. A Generative Approach to Person Reidentification. Sensors 2024, 24, 1240. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Shi, Y.; Ling, H.; Chen, J.; Liu, B.; Wang, R.; Zhao, C. Viewpoint Disentangling and Generation for Unsupervised Object Re-ID. ACM Trans. Multimed. Comput. Commun. Appl. 2024, 20, 1–23. [Google Scholar] [CrossRef]
- Yang, Z.; Lin, M.; Zhong, X.; Wu, Y.; Wang, Z. Good is Bad: Causality Inspired Cloth-debiasing for Cloth-changing Person Re-identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 1472–1481. [Google Scholar] [CrossRef]
- Hong, P.; Wu, T.; Wu, A.; Han, X.; Zheng, W.S. Fine-Grained Shape-Appearance Mutual Learning for Cloth-Changing Person Re-Identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 10508–10517. [Google Scholar] [CrossRef]
- Wang, T.; Liu, M.; Liu, H.; Li, W.; Ban, M.; Guo, T.; Li, Y. Feature Completion Transformer for Occluded Person Re-Identification. IEEE Trans. Multimed. 2024, 26, 8529–8542. [Google Scholar] [CrossRef]
- Dong, N.; Zhang, L.; Yan, S.; Tang, H.; Tang, J. Erasing, Transforming, and Noising Defense Network for Occluded Person Re-Identification. IEEE Trans. Circuits Syst. Video Technol. 2024, 34, 4458–4472. [Google Scholar] [CrossRef]
- Rao, H.; Miao, C. TranSG: Transformer-Based Skeleton Graph Prototype Contrastive Learning With Structure-Trajectory Prompted Reconstruction for Person Re-Identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 22118–22128. [Google Scholar] [CrossRef]
- Xu, X.; Yuan, X.; Wang, Z.; Zhang, K.; Hu, R. Rank-in-Rank Loss for Person Re-identification. ACM Trans. Multimed. Comput. Commun. Appl. 2022, 18, 1–21. [Google Scholar] [CrossRef]
- Yuan, X.; Xu, X.; Wang, Z.; Zhang, K.; Liu, W.; Hu, R. Searching Parameterized Retrieval & Verification Loss for Re-Identification. IEEE J. Sel. Top. Signal Process. 2023, 17, 560–574. [Google Scholar] [CrossRef]
- Lin, Y.; Zheng, L.; Zheng, Z.; Wu, Y.; Hu, Z.; Yan, C.; Yang, Y. Improving Person Re-identification by Attribute and Identity Learning. Pattern Recognit. 2019, 95, 151–161. [Google Scholar] [CrossRef]
- Huang, Y.; Zha, Z.J.; Fu, X.; Zhang, W. Illumination-Invariant Person Re-Identification. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 365–373. [Google Scholar] [CrossRef]
- Zhang, Z.; Da Xu, R.Y.; Jiang, S.; Li, Y.; Huang, C.; Deng, C. Illumination Adaptive Person Reid Based on Teacher-Student Model and Adversarial Training. In Proceedings of the IEEE International Conference on Image Processing, Abu Dhabi, United Arab Emirates, 25–28 October 2020; pp. 2321–2325. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, Z.; Wang, Z.; Zheng, Y.; Chuang, Y.Y.; Satoh, S. Illumination-Adaptive Person Re-Identification. IEEE Trans. Multimed. 2020, 22, 3064–3074. [Google Scholar] [CrossRef]
- Zhang, G.; Luo, Z.; Chen, Y.; Zheng, Y.; Lin, W. Illumination Unification for Person Re-Identification. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 6766–6777. [Google Scholar] [CrossRef]
- Huang, Y.; Fu, X.; Li, L.; Zha, Z.J. Learning Degradation-Invariant Representation for Robust Real-World Person Re-Identification. Int. J. Comput. Vis. 2022, 130, 2770–2796. [Google Scholar] [CrossRef]
- Zheng, L.; Shen, L.; Tian, L.; Wang, S.; Wang, J.; Tian, Q. Scalable Person Re-identification: A Benchmark. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1116–1124. [Google Scholar] [CrossRef]
- Zheng, Z.; Zheng, L.; Yang, Y. Unlabeled Samples Generated by GAN Improve the Person Re-Identification Baseline In Vitro. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 3754–3762. [Google Scholar] [CrossRef]
- Bąk, S.; Carr, P.; Lalonde, J.F. Domain Adaptation Through Synthesis for Unsupervised Person Re-identification. In Computer Vision—ECCV 2018, Proceedings of the 15th European Conference, Munich, Germany, 8–14 September 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer: Cham, Switzerland, 2018; pp. 193–209. [Google Scholar] [CrossRef]
- Xiang, S.; You, G.; Li, L.; Guan, M.; Liu, T.; Qian, D.; Fu, Y. Rethinking Illumination for Person Re-Identification: A Unified View. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–20 June 2022; pp. 4730–4738. [Google Scholar] [CrossRef]
- Xiang, S.; Qian, D.; Guan, M.; Yan, B.; Liu, T.; Fu, Y.; You, G. Less Is More: Learning from Synthetic Data with Fine-Grained Attributes for Person Re-Identification. ACM Trans. Multimed. Comput. Commun. Appl. 2023, 19, 1–20. [Google Scholar] [CrossRef]
- Lu, A.; Zhang, Z.; Huang, Y.; Zhang, Y.; Li, C.; Tang, J.; Wang, L. Illumination Distillation Framework for Nighttime Person Re-Identification and a New Benchmark. IEEE Trans. Multimed. 2023, 26, 406–419. [Google Scholar] [CrossRef]
- Zheng, A.; Wang, Z.; Chen, Z.; Li, C.; Tang, J. Robust Multi-Modality Person Re-identification. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 2–9 February 2021; Volume 35, pp. 3529–3537. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, Y.; Wang, Q. Night Person Re-Identification and a Benchmark. IEEE Access 2019, 7, 95496–95504. [Google Scholar] [CrossRef]
- Penate-Sanchez, A.; Freire-Obregon, D.; Lorenzo-Melian, A.; Lorenzo-Navarro, J.; Castrillon-Santana, M. TGC20ReId: A Dataset for Sport Event Re-identification in the Wild. Pattern Recognit. Lett. 2020, 138, 355–361. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H. Diverse Embedding Expansion Network and Low-Light Cross-Modality Benchmark for Visible-Infrared Person Re-identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 2153–2162. [Google Scholar] [CrossRef]
- Santana, O.J.; Lorenzo-Navarro, J.; Freire-Obregón, D.; Hernández-Sosa, D.; Castrillón-Santana, M. Applying Deep Learning Image Enhancement Methods to Improve Person Re-Identification. Neurocomputing 2024, 598, 128011. [Google Scholar] [CrossRef]
- Lu, A.; Li, C.; Zha, T.; Wang, X.; Tang, J.; Luo, B. Nighttime Person Re-Identification via Collaborative Enhancement Network with Multi-domain Learning. IEEE Trans. Inf. Forensics Secur. 2025, 20, 1305–1319. [Google Scholar] [CrossRef]
- Guo, C.; Li, C.; Guo, J.; Loy, C.C.; Hou, J.; Kwong, S.; Cong, R. Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1780–1789. [Google Scholar] [CrossRef]
- He, S.; Luo, H.; Wang, P.; Wang, F.; Li, H.; Jiang, W. TransReID: Transformer-Based Object Re-Identification. In Proceedings of the IEEE International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 15013–15022. [Google Scholar] [CrossRef]
- Zhu, K.; Guo, H.; Zhang, S.; Wang, Y.; Liu, J.; Wang, J.; Tang, M. AAformer: Auto-Aligned Transformer for Person Re-Identification. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 17307–17317. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Guo, H.; Yan, T.; Zhu, Y.; Wang, J.; Tang, M. PASS: Part-Aware Self-Supervised Pre-Training for Person Re-Identification. In Computer Vision–ECCV 2022, Proceedings of the 17th European Conference, Tel Aviv, Israel, 23–27 October 2022; Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T., Eds.; Springer: Cham, Switzerland, 2022; pp. 198–214. [Google Scholar] [CrossRef]
- Liu, W.; Xu, X.; Chang, H.; Yuan, X.; Wang, Z. Mix-Modality Person Re-Identification: A New and Practical Paradigm. arXiv 2024, arXiv:2412.04719. [Google Scholar] [CrossRef]
- Luo, H.; Gu, Y.; Liao, X.; Lai, S.; Jiang, W. Bag of Tricks and a Strong Baseline for Deep Person Re-Identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–20 June 2019; pp. 1487–1495. [Google Scholar] [CrossRef]
- Ye, M.; Shen, J.; Lin, G.; Xiang, T.; Shao, L.; Hoi, S.C. Deep Learning for Person Re-Identification: A Survey and Outlook. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 2872–2893. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, J.; Chen, Y.; Zheng, Y.; Zhang, H. Multi-Biometric Unified Network for Cloth-Changing Person Re-Identification. IEEE Trans. Image Process. 2023, 32, 4555–4566. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhao, S.; Li, S.; Cheng, B.; Chen, J. Research on Person Re-Identification through Local and Global Attention Mechanisms and Combination Poolings. Sensors 2024, 24, 5638. [Google Scholar] [CrossRef]
- Kviatkovsky, I.; Adam, A.; Rivlin, E. Color Invariants for Person Reidentification. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1622–1634. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Jin, H.; Tan, W.T.; Nahrstedt, K. SKEPRID: Pose and Illumination Change-Resistant Skeleton-Based Person Re-Identification. ACM Trans. Multimed. Comput. Commun. Appl. 2018, 14, 1–24. [Google Scholar] [CrossRef]
- Bhuiyan, A.; Perina, A.; Murino, V. Exploiting Multiple Detections to Learn Robust Brightness Transfer Functions in Re-identification Systems. In Proceedings of the IEEE International Conference on Image Processing, Quebec City, QC, Canada, 27–30 September 2015; pp. 2329–2333. [Google Scholar] [CrossRef]
- Schumann, A.; Stiefelhagen, R. Person Re-identification by Deep Learning Attribute-Complementary Information. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 20–28. [Google Scholar] [CrossRef]
- Li, S.; Sun, L.; Li, Q. CLIP-ReID: Exploiting Vision-Language Model for Image Re-identification without Concrete Text Labels. In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; pp. 1405–1413. [Google Scholar] [CrossRef]
- Zhai, Y.; Zeng, Y.; Huang, Z.; Qin, Z.; Jin, X.; Cao, D. Multi-Prompts Learning with Cross-Modal Alignment for Attribute-Based Person Re-identification. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 20–27 February 2024; Volume 38, pp. 6979–6987. [Google Scholar] [CrossRef]
- Lee, K.W.; Jawade, B.; Mohan, D.; Setlur, S.; Govindaraju, V. Attribute De-biased Vision Transformer (AD-ViT) for Long-Term Person Re-identification. In Proceedings of the IEEE International Conference on Advanced Video and Signal Based Surveillance, Madrid, Spain, 29 November–2 December 2022; pp. 1–8. [Google Scholar] [CrossRef]
- Zhou, K.; Yang, Y.; Qiao, Y.; Xiang, T. MixStyle Neural Networks for Domain Generalization and Adaptation. Int. J. Comput. Vis. 2024, 132, 822–836. [Google Scholar] [CrossRef]
- Liu, R.; Ma, L.; Zhang, J.; Fan, X.; Luo, Z. Retinex-Inspired Unrolling With Cooperative Prior Architecture Search for Low-Light Image Enhancement. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 10561–10570. [Google Scholar] [CrossRef]
- Yang, S.; Zhou, D.; Cao, J.; Guo, Y. Rethinking Low-Light Enhancement via Transformer-GAN. IEEE Signal Process. Lett. 2022, 29, 1082–1086. [Google Scholar] [CrossRef]
- Guo, T.; Seyed Mousavi, H.; Huu Vu, T.; Monga, V. Deep Wavelet Prediction for Image Super-Resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 104–113. [Google Scholar] [CrossRef]
- Yang, Y.; Soatto, S. FDA: Fourier Domain Adaptation for Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 4085–4095. [Google Scholar] [CrossRef]
- Yao, T.; Pan, Y.; Li, Y.; Ngo, C.W.; Mei, T. Wave-ViT: Unifying Wavelet and Transformers for Visual Representation Learning. In Proceedings of the European Conference on Computer Vision, Seattle, WA, USA, 13–19 June 2022; pp. 328–345. [Google Scholar]
- Ma, L.; Gao, T.; Jiang, H.; Shen, H.; Huang, K. WaveIPT: Joint Attention and Flow Alignment in the Wavelet domain for Pose Transfer. In Proceedings of the IEEE International Conference on Computer Vision, Paris, France, 1–6 October 2023; pp. 7215–7225. [Google Scholar] [CrossRef]
- Luo, H.; Wang, P.; Xu, Y.; Ding, F.; Zhou, Y.; Wang, F.; Li, H.; Jin, R. Self-Supervised Pre-Training for Transformer-Based Person Re-Identification. arXiv 2021, arXiv:2111.12084. [Google Scholar]
- Xiao, T.; Singh, M.; Mintun, E.; Darrell, T.; Dollár, P.; Girshick, R. Early Convolutions Help Transformers See Better. Proc. Adv. Neural Inf. Process. Syst. 2021, 34, 30392–30400. [Google Scholar] [CrossRef]
- Pan, X.; Luo, P.; Shi, J.; Tang, X. Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net. In Computer Vision—ECCV 2018, Proceedings of the 15th European Conference, Munich, Germany, 8–14 September 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer: Cham, Switzerland, 2018; pp. 484–500. [Google Scholar] [CrossRef]
- Fu, D.; Chen, D.; Bao, J.; Yang, H.; Yuan, L.; Zhang, L.; Li, H.; Chen, D. Unsupervised Pre-training for Person Re-identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 14745–14754. [Google Scholar] [CrossRef]
- Zheng, Z.; Zheng, L.; Yang, Y. A Discriminatively Learned CNN Embedding for Person Reidentification. ACM Trans. Multimed. Comput. Commun. Appl. 2017, 14, 1–20. [Google Scholar] [CrossRef]
- Sun, Y.; Zheng, L.; Yang, Y.; Tian, Q.; Wang, S. Beyond Part Models: Person Retrieval with Refined Part Pooling (and A Strong Convolutional Baseline). In Proceedings of the 15th European Conference, Munich, Germany, 8–14 September 2018; pp. 480–496. [Google Scholar] [CrossRef]
- Wang, G.; Yuan, Y.; Chen, X.; Li, J.; Zhou, X. Learning Discriminative Features with Multiple Granularities for Person Re-Identification. In Proceedings of the 26th ACM International Conference on Multimedia, Seoul, Republic of Korea, 22–26 October 2018; pp. 274–282. [Google Scholar] [CrossRef]
- Chen, T.; Ding, S.; Xie, J.; Yuan, Y.; Chen, W.; Yang, Y.; Ren, Z.; Wang, Z. ABD-Net: Attentive but Diverse Person Re-Identification. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 8350–8360. [Google Scholar] [CrossRef]
- Wu, C.; Ge, W.; Wu, A.; Chang, X. Camera-Conditioned Stable Feature Generation for Isolated Camera Supervised Person Re-IDentification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 20238–20248. [Google Scholar] [CrossRef]
- Wang, M.; Gong, X. Learning Intra and Inter-Camera Invariance for Isolated Camera Supervised Person Re-identification. In Proceedings of the 31st ACM International Conference on Multimedia, Ottawa, ON, Canada, 29 October–3 November 2023; pp. 8387–8395. [Google Scholar] [CrossRef]
- He, L.; Liao, X.; Liu, W.; Liu, X.; Cheng, P.; Mei, T. Fastreid: A Pytorch Toolbox for General Instance Re-identification. In Proceedings of the 31st ACM International Conference on Multimedia, Ottawa, ON, Canada, 29 October–3 November 2023; pp. 9664–9667. [Google Scholar] [CrossRef]
- Li, W.; Zou, C.; Wang, M.; Xu, F.; Zhao, J.; Zheng, R.; Cheng, Y.; Chu, W. DC-Former: Diverse and Compact Transformer for Person Re-identification. In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; pp. 1415–1423. [Google Scholar] [CrossRef]
- Ni, H.; Li, Y.; Gao, L.; Shen, H.T.; Song, J. Part-Aware Transformer for Generalizable Person Re-identification. In Proceedings of the IEEE International Conference on Computer Vision, Paris, France, 1–6 October 2023; pp. 11280–11289. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, P.; Qi, J.; Lu, H. HAT: Hierarchical Aggregation Transformers for Person Re-identification. In Proceedings of the 29th ACM International Conference on Multimedia, Virtual, 20–24 October 2021; Association for Computing Machinery: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Wang, H.; Shen, J.; Liu, Y.; Gao, Y.; Gavves, E. NFormer: Robust Person Re-identification with Neighbor Transformer. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 7297–7307. [Google Scholar] [CrossRef]
- Li, S.; Li, F.; Li, J.; Li, H.; Zhang, B.; Tao, D.; Gao, X. Logical Relation Inference and Multiview Information Interaction for Domain Adaptation Person Re-Identification. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 14770–14782. [Google Scholar] [CrossRef]
Night600 | ||||||
---|---|---|---|---|---|---|
Backbone | Method | Venue | Rank1 | Rank5 | Rank10 | mAP |
CNN | IDE* [58] | TOMM17 | 10.4 | 21.6 | 29.0 | 3.3 |
PCB [59] | ECCV18 | 11.4 | 22.7 | 30.6 | 5.9 | |
MGN [60] | ACM MM18 | 5.4 | 10.3 | 15.2 | 3.9 | |
ABDNet [61] | ICCV19 | 15.5 | 32.2 | 42.2 | 7.9 | |
BoT [36] | CVPRW19 | 12.4 | 23.9 | 30.7 | 5.2 | |
AGW [37] | TPAMI21 | 13.6 | 23.9 | 32.4 | 6.4 | |
CCSFG [62] | CVPR22 | 12.2 | 26.2 | 34.2 | 5.4 | |
IICI [63] | ACM MM23 | 8.4 | 19.2 | 25.6 | 3.1 | |
FastReID [64] | ACM MM23 | 14.6 | 26.6 | 33.9 | 7.2 | |
IDF [24] | TMM23 | 11.8 | 27.7 | 36.6 | 6.1 | |
Transformer | TransReid [32] | ICCV21 | 14.9 | 28.0 | 38.5 | 7.5 |
PASS [34] | ECCV22 | 12.8 | 28.7 | 37.6 | 6.7 | |
DC-Former [65] | AAAI23 | 8.9 | 19.8 | 29.1 | 5.9 | |
IICI(ViT) [63] | ACM MM23 | 11.2 | 22.9 | 29.5 | 4.3 | |
LRIMV [69] | TNNLS23 | 5.4 | 12.2 | 17.3 | 2.9 | |
PSD [66] | ICCV23 | 7.3 | 17.2 | 22.8 | 3.4 | |
TransReid-SSL [54] | arxiv21 | 19.5 | 35.6 | 45.4 | 9.1 | |
CNN-Transformer | HAT [67] | MM21 | 6.4 | 13.0 | 19.2 | 3.1 |
NFormer [68] | CVPR22 | 10.0 | 22.9 | 31.8 | 4.3 | |
Transformer | FDT (Ours) | - | 19.9 | 36.0 | 45.4 | 9.5 |
Backbone | Method | Venue | Rank1 | Rank5 | Rank10 | mAP |
---|---|---|---|---|---|---|
CNN | IDE* [58] | TOMM17 | 10.4 | 21.6 | 29.0 | 3.3 |
PCB [59] | ECCV18 | 10.0 | 19.3 | 26.6 | 15.4 | |
MGN [60] | ACM MM18 | 16.2 | 26.0 | 33.4 | 21.5 | |
ABDNet [61] | ICCV19 | 18.9 | 32.5 | 44.55 | 22.5 | |
BoT [36] | CVPRW19 | 17.5 | 30.1 | 39.9 | 21.0 | |
AGW [37] | TPAMI21 | 21.1 | 37.2 | 49.3 | 23.7 | |
CCSFG [62] | CVPR22 | 27.7 | 38.8 | 48.9 | 28.9 | |
IICI [63] | ACM MM23 | 1.6 | 3.4 | 5.1 | 4.4 | |
FastReID [64] | ACM MM23 | 24.9 | 39.0 | 48.6 | 27.2 | |
Transformer | TransReid [32] | ICCV21 | 37.2 | 54.1 | 64.5 | 38.2 |
PASS [34] | ECCV22 | 20.3 | 34.9 | 46.0 | 24.9 | |
DC-Former [65] | AAAI23 | 9.8 | 22.4 | 34.8 | 15.1 | |
IICI(Vit) [63] | ACM MM23 | 34.6 | 50.1 | 59.4 | 34.7 | |
LRIMV [69] | TNNLS23 | 38.2 | 55.7 | 64.7 | 38.1 | |
PSD [66] | ICCV23 | 28.8 | 43.0 | 52.9 | 30.6 | |
TransReid-SSL [54] | arxiv21 | 44.9 | 57.6 | 66.2 | 45.8 | |
CNN-Transformer | HAT [67] | MM21 | 13.1 | 26.3 | 35.7 | 19.8 |
NFormer [68] | CVPR22 | 19.0 | 31.8 | 41.6 | 20.3 | |
Transformer | FDT (Ours) | - | 45.0 | 59.6 | 70.4 | 46.9 |
AGM | FRM | NCL | Night600 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Rank1 | Rank5 | Rank10 | mAP | Rank1 | Rank5 | Rank10 | mAP | |||
- | - | - | 19.5 | 35.6 | 45.4 | 9.1 | 44.9 | 57.6 | 66.2 | 45.8 |
- | ✓ | ✓ | 17.6 | 33.5 | 42.8 | 8.7 | 37.3 | 51.4 | 63.8 | 38.7 |
✓ | ✓ | - | 19.7 | 35.6 | 44.5 | 8.4 | 43.7 | 58.0 | 69.3 | 46.0 |
✓ | ✓ | ✓ | 19.9 | 36.0 | 45.4 | 9.5 | 45.0 | 59.6 | 70.4 | 46.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.; He, Y.; Hao, G. Identity Hides in Darkness: Learning Feature Discovery Transformer for Nighttime Person Re-Identification. Sensors 2025, 25, 862. https://doi.org/10.3390/s25030862
Yuan X, He Y, Hao G. Identity Hides in Darkness: Learning Feature Discovery Transformer for Nighttime Person Re-Identification. Sensors. 2025; 25(3):862. https://doi.org/10.3390/s25030862
Chicago/Turabian StyleYuan, Xin, Ying He, and Guozhu Hao. 2025. "Identity Hides in Darkness: Learning Feature Discovery Transformer for Nighttime Person Re-Identification" Sensors 25, no. 3: 862. https://doi.org/10.3390/s25030862
APA StyleYuan, X., He, Y., & Hao, G. (2025). Identity Hides in Darkness: Learning Feature Discovery Transformer for Nighttime Person Re-Identification. Sensors, 25(3), 862. https://doi.org/10.3390/s25030862