Particle Filter Tracking System Based on Digital Zoom and Regional Image Measure
Abstract
:1. Introduction
- (1)
- We introduce a technique for adaptive digital zoom that dynamically adjusts the location and size of the region of interest (ROI), based on the target’s nonlinear normalized center distance and aspect ratio. This enables real-time detection and tracking within a broad field of view and high dynamic range. The spatial and temporal resolution of the target tracking process is enhanced.
- (2)
- In addition, we introduce a particle filter tracking algorithm that integrates multi-scale regional measures into the resampling process. By constructing a multi-scale regional measure feature module, the resampling is improved according to the target change state, and the extended Kalman filter (EKF) is applied to improve the importance density of the particle filter. The improved method removes the interference of motion mutations and improves the stability and accuracy of target tracking.
- (3)
- Furthermore, our method achieves impressive results on public benchmark test sets. It outperforms existing methods, including deep feature matching and trackers based on correlation filters, in terms of target tracking accuracy and tracking error. Our method also attains state-of-the-art performance for object tracking tasks in scenes with complex motion variations and large distance variations, thereby demonstrating the general applicability of our approach.
2. Related Works
2.1. Application of ROI
2.2. Target Tracking
3. Methodology
3.1. Adaptive Digital Zoom Tracking System
3.2. ROI Adaptive Digital Zoom Algorithm
Algorithm 1 The ROI adaptive digital zoom algorithm |
Input: x, y, w, h Output: ROI
|
3.3. Particle Filter Tracking Algorithm Based on Multi-Scale Regional Measure Resampling
3.3.1. Multi-Scale Regional Feature Module
3.3.2. Improved Firefly Algorithm Based on Multi-Scale Area Measure (IMFA)
3.3.3. Improved Firefly Algorithm Optimized Particle Filter Based on Multi-Scale Regional Measure (IMR-PF)
4. Experiments
4.1. Experimental Setup
4.2. Dataset
4.3. Evaluation Criteria
4.4. Target Tracking Experiment on U-Skier Dataset
4.5. Indoor Simulation Experiment on U-Skier Dataset
4.6. Experiments on the VOT2021 Dataset
5. Ablation Study
- (1)
- Adaptive digital zoom structure: this structure is capable of handling both small targets at a distance and large targets at a close distance by adaptively cropping and scaling the visual sensor image. It ensures a uniform target size in the input detection network. High-resolution and large-field-of-view images are time-consuming for target detection. This structure can reduce unnecessary interference while reducing the amount of algorithm calculation, so that the detection and tracking algorithms can focus on effective target features.
- (2)
- Multi-scale feature measure of target region: this model enhances the resampling rule of particle update and exhibits high responsiveness to significant target changes. By introducing the mutation type of target motion and target change information into the tracking algorithm, this structure facilitates improving tracking performance.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Zhang, C.; Shum, H.-Y. Face Image Resolution versus Face Recognition Performance Based on Two Global Methods. In Proceedings of the Asia Conference on Computer Vision, ACCV 2004, Jeju, Republic of Korea, 27–30 January 2004; Volume 47, pp. 48–49. [Google Scholar]
- Koziarski, M.; Cyganek, B. Impact of Low Resolution on Image Recognitionwith Deep Neural Networks: An Experimental Study. Int. J. Appl. Math. Comput. Sci. 2018, 28, 735–744. [Google Scholar] [CrossRef]
- Song, R.; Zhang, S.; Cheng, J.; Li, C.; Chen, X. New Insights on Super-High Resolution for Video-Based Heart Rate Estimation with a Semi-Blind Source Separation Method. Comput. Biol. Med. 2020, 116, 103535. [Google Scholar] [CrossRef] [PubMed]
- Korshunov, P.; Ooi, W.T. Critical Video Quality for Distributed Automated Video Surveillance. In Proceedings of the 13th Annual ACM International Conference on Multimedia, Singapore, 6 November 2005; pp. 151–160. [Google Scholar]
- Handa, A.; Newcombe, R.A.; Angeli, A.; Davison, A.J. Real-Time Camera Tracking: When Is High Frame-Rate Best? In Computer Vision—ECCV 2012, Proceedings of the 12th European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7578, pp. 222–235. ISBN 978-3-642-33785-7. [Google Scholar]
- Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. High-Speed Tracking with Kernelized Correlation Filters. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 37, 583–596. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Ma, C.; Wu, X.; Gong, L.; Bao, L.; Zuo, W.; Shen, C.; Lau, R.W.; Yang, M.-H. VITAL: Visual Tracking via Adversarial Learning. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8990–8999. [Google Scholar]
- Liu, S.; Wei, G.; Song, Y.; Liu, Y. Extended Kalman Filtering for Stochastic Nonlinear Systems with Randomly Occurring Cyber Attacks. Neurocomputing 2016, 207, 708–716. [Google Scholar] [CrossRef]
- Arulampalam, M.S.; Maskell, S.; Gordon, N.; Clapp, T. A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE Trans. Signal Process. 2002, 50, 174–188. [Google Scholar] [CrossRef]
- Doucet, A.; Godsill, S.; Andrieu, C. On Sequential Monte Carlo Sampling Methods for Bayesian Filtering. Stat. Comput. 2000, 10, 197–208. [Google Scholar] [CrossRef]
- Tian, M.; Bo, Y.; Chen, Z.; Wu, P.; Yue, C. Multi-Target Tracking Method Based on Improved Firefly Algorithm Optimized Particle Filter. Neurocomputing 2019, 359, 438–448. [Google Scholar] [CrossRef]
- Li, B.; Wu, W.; Wang, Q.; Zhang, F.; Xing, J.; Yan, J. SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 4277–4286. [Google Scholar]
- Chen, J.; Huang, H.-W.; Rupp, P.; Sinha, A.; Ehmke, C.; Traverso, G. Closed-Loop Region of Interest Enabling High Spatial and Temporal Resolutions in Object Detection and Tracking via Wireless Camera. IEEE Access 2021, 9, 87340–87350. [Google Scholar] [CrossRef]
- Feng, L.; Po, L.-M.; Xu, X.; Li, Y.; Cheung, C.-H.; Cheung, K.-W.; Yuan, F. Dynamic ROI Based on K-Means for Remote Photoplethysmography. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, QLD, Australia, 19–24 April 2015; pp. 1310–1314. [Google Scholar]
- Kalluri, H.K.; Prasad, M.V.N.K.; Agarwal, A. Dynamic ROI Extraction Algorithm for Palmprints. In Advances in Swarm Intelligence, Proceedings of the Third International Conference, ICSI 2012, Shenzhen, China, 17–20 June 2012; Tan, Y., Shi, Y., Ji, Z., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 217–227. [Google Scholar]
- Yano, K.; Ishihara, K.; Makikawa, M.; Kusuoka, H. Detection of Eye Blinking from Video Camera with Dynamic ROI Fixation. In Proceedings of the 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No. 99CH37028), Tokyo, Japan, 12–15 October 1999; Volume 6, pp. 335–339. [Google Scholar]
- Rahmiati, P.; Fajri, A.; Handayani, A.; Mengko, T.L.R.; Suksmono, A.B.; Pramudito, J.T. Distributed System for Medical Image Transfer Using Wavelet-Based Dynamic RoI Coding. In Proceedings of the 7th International Workshop on Enterprise networking and Computing in Healthcare Industry, 2005 (HEALTHCOM 2005), Busan, Republic of Korea, 23–25 June 2005; pp. 191–196. [Google Scholar]
- Meuel, H.; Kluger, F.; Ostermann, J. Region of Interest (ROI) Coding for Aerial Surveillance Video Using AVC & HEVC. arXiv 2018. [Google Scholar] [CrossRef]
- Gao, J.; Jin, Z. A Region of Interest Prediction Method for Real-Time Online Dynamic Magnetic Resonance Imaging. In Proceedings of the 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Shanghai, China, 14–16 October 2017; pp. 1–5. [Google Scholar]
- Tian, J.; Wang, Z.; Zhu, Q. An Improved Lane Boundaries Detection Based on Dynamic ROI. In Proceedings of the 2017 IEEE 9th International Conference on Communication Software and Networks (ICCSN), Guangzhou, China, 6–8 May 2017; pp. 1212–1217. [Google Scholar]
- Dynamic Region of Interest Extract Method for JPEG2000 Coding|IEEE Conference Publication|IEEE Xplore. Available online: https://ieeexplore.ieee.org/document/5544812 (accessed on 1 September 2024).
- Kiadtikornthaweeyot, W.; Tatnall, A.R.L. Region of interest detection based on histogram segmentation for satellite image. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B7, 249–255. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, L.; Sun, Y. ROI Extraction Based on Multiview Learning and Attention Mechanism for Unbalanced Remote Sensing Data Set. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6210–6223. [Google Scholar] [CrossRef]
- Khodarahmi, M.; Maihami, V. A Review on Kalman Filter Models. Arch. Comput. Methods Eng. 2023, 30, 727–747. [Google Scholar] [CrossRef]
- Einicke, G.A.; White, L.B. Robust Extended Kalman Filtering. IEEE Trans. Signal Process. 1999, 47, 2596–2599. [Google Scholar] [CrossRef]
- Wojke, N.; Bewley, A.; Paulus, D. Simple Online and Realtime Tracking with a Deep Association Metric. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3645–3649. [Google Scholar]
- Zhang, Y.; Sun, P.; Jiang, Y.; Yu, D.; Weng, F.; Yuan, Z.; Luo, P.; Liu, W.; Wang, X. ByteTrack: Multi-Object Tracking by Associating Every Detection Box. In Computer Vision—ECCV 2022, Proceedings of the 7th European Conference, Tel Aviv, Israel, 23–27 October 2022; Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T., Eds.; Springer: Cham, Switzerland, 2022; pp. 1–21. [Google Scholar]
- Li, G.; Chen, X.; Li, M.; Li, W.; Li, S.; Guo, G.; Wang, H.; Deng, H. One-Shot Multi-Object Tracking Using CNN-Based Networks with Spatial-Channel Attention Mechanism. Opt. Laser Technol. 2022, 153, 108267. [Google Scholar] [CrossRef]
- An, D.; Zhang, F.; Zhao, Y.; Luo, B.; Yang, C.; Chen, B.; Yu, L. MTAtrack: Multilevel Transformer Attention for Visual Tracking. Opt. Laser Technol. 2023, 166, 109659. [Google Scholar] [CrossRef]
- Manzoor, S.; An, Y.-C.; In, G.-G.; Zhang, Y.; Kim, S.; Kuc, T.-Y. SPT: Single Pedestrian Tracking Framework with Re-Identification-Based Learning Using the Siamese Model. Sensors 2023, 23, 4906. [Google Scholar] [CrossRef]
- Feng, W.; Meng, F.; Yu, C.; You, A. Fusion of Multiple Attention Mechanisms and Background Feature Adaptive Update Strategies in Siamese Networks for Single-Object Tracking. Appl. Sci. 2024, 14, 8199. [Google Scholar] [CrossRef]
- Miao, B.; Chen, Z.; Liu, H.; Zhang, A. A Target Re-Identification Method Based on Shot Boundary Object Detection for Single Object Tracking. Appl. Sci. 2023, 13, 6422. [Google Scholar] [CrossRef]
- Liang, X.; Chen, M.; Liu, E. MLGT: Multi-Local Guided Tracker for Visual Object Tracking. J. Real-Time Image Process. 2024, 21, 54. [Google Scholar] [CrossRef]
- Djuric, P.M.; Kotecha, J.H.; Zhang, J.; Huang, Y.; Ghirmai, T.; Bugallo, M.F.; Miguez, J. Particle Filtering. IEEE Signal Process. Mag. 2003, 20, 19–38. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Z. Particle Filter Based on Particle Swarm Optimization Resampling for Vision Tracking. Expert Syst. Appl. 2010, 37, 8910–8914. [Google Scholar] [CrossRef]
- Yang, X.-S. Firefly Algorithms for Multimodal Optimization. In Stochastic Algorithms: Foundations and Applications, Proceedings of the 5th International Symposium, SAGA 2009, Sapporo, Japan, 26–28 October 2009; Watanabe, O., Zeugmann, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 169–178. [Google Scholar]
- Zhao, Z.; Feng, P.; Guo, J.; Yuan, C.; Wang, T.; Liu, F.; Zhao, Z.; Cui, Z.; Wu, B. A Hybrid Tracking Framework Based on Kernel Correlation Filtering and Particle Filtering. Neurocomputing 2018, 297, 40–49. [Google Scholar] [CrossRef]
- Felzenszwalb, P.F.; Girshick, R.B.; McAllester, D.; Ramanan, D. Object Detection with Discriminatively Trained Part-Based Models. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 1627–1645. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Wang, P.; Ren, D.; Liu, W.; Ye, R.; Hu, Q.; Zuo, W. Enhancing Geometric Factors in Model Learning and Inference for Object Detection and Instance Segmentation. IEEE Trans. Cybern. 2022, 52, 8574–8586. [Google Scholar] [CrossRef]
- Qin, Y.; Bruzzone, L.; Gao, C.; Li, B. Infrared Small Target Detection Based on Facet Kernel and Random Walker. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7104–7118. [Google Scholar] [CrossRef]
- Glenn, J.; Ayush, C.; Jing, Q. Ultralytics YOLOv8. 2023. Available online: https://github.com/ultralytics/yolov5 (accessed on 22 January 2025).
- Gao, M.-L.; Li, L.-L.; Sun, X.-M.; Yin, L.-J.; Li, H.-T.; Luo, D.-S. Firefly Algorithm (FA) Based Particle Filter Method for Visual Tracking. Optik 2015, 126, 1705–1711. [Google Scholar] [CrossRef]
- Cao, J.; Pang, J.; Weng, X.; Khirodkar, R.; Kitani, K. Observation-Centric SORT: Rethinking SORT for Robust Multi-Object Tracking. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 9686–9696. [Google Scholar]
- Kristan, M.; Matas, J.; Leonardis, A.; Felsberg, M.; Pflugfelder, R.; Kämäräinen, J.-K.; Chang, H.J.; Danelljan, M.; Cehovin, L.; Lukežič, A.; et al. The Ninth Visual Object Tracking VOT2021 Challenge Results. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 11–17 October 2021; pp. 2711–2738. [Google Scholar]
- Jocher, G. Ultralytics YOLOv5. 2020. Available online: https://github.com/ultralytics/ultralytics (accessed on 22 January 2025).
Dataset | Frame Numbers | Challenging Factors |
---|---|---|
Graduate | 844 | Low Resolution, Motion Change, Camera Motion, Illumination Change, Size Change, Occlusion |
Matrix | 100 | Occlusion, Camera Motion, Illumination Change, Motion Change, Scale Variation |
Nature | 999 | Size Change, Camera Motion, Occlusion, Illumination Change, Motion Change, |
Racing | 156 | Key Frame, Camera Motion, Illumination Change, Motion Change, Occlusion, Size Change |
Road | 558 | Out-of-Plane Rotation, Background Clutters, Deformation, Fast Motion, Size Change, Illumination Change, Occlusion, Camera Motion |
Shaking | 365 | Motion Change, Camera Motion, Occlusion, Size Change, Illumination Change |
Soccer1 | 392 | Camera Motion, Illumination Change, Motion Change, Occlusion, Scale Variation |
Pedestrian1 | 140 | Size Change, Camera Motion, Illumination Change, Motion Change, Occlusion |
EKF | FAPF | PSO-PF | SORT | KCF-PF | Siam RPN++ | IFA-PF | Bytetrack | oc-sort | SPT | FBST | MLGT | Ours | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ACE | 53.04 | 39.25 | 35.37 | 22.42 | 41.72 | 17.40 | 16.48 | 24.98 | 19.46 | 14.94 | 15.61 | 13.53 | 12.93 |
Time cost (ms) | 15.18 | 43.67 | 21.38 | 27.13 | 12.72 | 36.31 | 10.42 | 16.83 | 17.16 | 55.65 | 43.74 | 82.64 | 8.40 |
EKF | PAPF | PSO-PF | SORT | KCF-PF | Siam RPN++ | IFA-PF | Bytetrack | oc-sort | SPT | FBST | MLGT | Ours | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
graduate | 66.47 | 23.46 | 9.43 | 15.78 | 4.68 | 6.74 | 4.01 | 9.99 | 2.08 | 2.41 | 2.94 | 2.59 | 1.33 |
matrix | 55.18 | 43.67 | 21.38 | 7.13 | 12.72 | 6.3 | 5.42 | 5.83 | 5.16 | 5.17 | 5.81 | 4.82 | 4.40 |
nature | 33.42 | 21.58 | 8.12 | 14.1 | 4.03 | 3.36 | 3.47 | 2.71 | 1.97 | 2.47 | 2.55 | 2.27 | 2.07 |
racing | 25.37 | 15.04 | 11.02 | 1.25 | 2.2 | 2.89 | 2.93 | 1.44 | 2.77 | 1.87 | 1.98 | 1.8 | 1.03 |
road | 40.81 | 35.51 | 17.16 | 10.25 | 7.57 | 17.09 | 6.98 | 8.73 | 8.10 | 4.29 | 4.48 | 3.88 | 3.71 |
shaking | 59.22 | 44.75 | 10.49 | 5.71 | 4.94 | 4.64 | 4.97 | 8.91 | 3.99 | 4.48 | 4.67 | 4.22 | 2.88 |
soccer1 | 59.07 | 45.54 | 11.42 | 6.35 | 3.92 | 4.82 | 5.27 | 7.46 | 3.66 | 4.66 | 6.93 | 4.22 | 4.03 |
pedestrian | 27.99 | 25.55 | 16.18 | 5.77 | 2.88 | 3.13 | 5.02 | 5.05 | 3.87 | 4.27 | 4.46 | 4.03 | 2.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Dong, L.; Chu, X.; Liu, M.; Kong, L.; Zhao, Y. Particle Filter Tracking System Based on Digital Zoom and Regional Image Measure. Sensors 2025, 25, 880. https://doi.org/10.3390/s25030880
Zhao Q, Dong L, Chu X, Liu M, Kong L, Zhao Y. Particle Filter Tracking System Based on Digital Zoom and Regional Image Measure. Sensors. 2025; 25(3):880. https://doi.org/10.3390/s25030880
Chicago/Turabian StyleZhao, Qisen, Liquan Dong, Xuhong Chu, Ming Liu, Lingqin Kong, and Yuejin Zhao. 2025. "Particle Filter Tracking System Based on Digital Zoom and Regional Image Measure" Sensors 25, no. 3: 880. https://doi.org/10.3390/s25030880
APA StyleZhao, Q., Dong, L., Chu, X., Liu, M., Kong, L., & Zhao, Y. (2025). Particle Filter Tracking System Based on Digital Zoom and Regional Image Measure. Sensors, 25(3), 880. https://doi.org/10.3390/s25030880