Adaptive Grasp Pose Optimization for Robotic Arms Using Low-Cost Depth Sensors in Complex Environments
Abstract
:1. Introduction
- A PCA-based point cloud processing method for diverse target types and orientations, offering superior generalization.
- A grasp strategy considering both target pose and environment for successful, collision-free grasps in complex scenes.
- Millisecond-level grasp estimation using low-cost depth sensors, ensuring deployability with minimal size, weight, and power (SwaP) requirements.
2. Methods
2.1. System Overview
2.2. Data Acquisition and Preprocessing
2.3. Grasp Pose Estimation
2.3.1. Ellipsoid Modeling
2.3.2. Grasp Pose Optimization
2.3.3. Obstacle Avoidance Design
Algorithm 1: Grasp pose estimation and optimization. |
3. Experiment
3.1. Simulation Experiments
3.2. Real-World Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Belanche, D.; Casaló, L.V.; Flavián, C.; Schepers, J. Service robot implementation: A theoretical framework and research agenda. Serv. Ind. J. 2020, 40, 203–225. [Google Scholar] [CrossRef]
- Varley, J.; Weisz, J.; Weiss, J.; Allen, P. Generating multi-fingered robotic grasps via deep learning. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 4524–4530. [Google Scholar]
- Fang, H.-S.; Wang, C.; Fang, H.; Gou, M.; Liu, J.; Yan, H.; Liu, W.; Xie, Y.; Lu, C. Anygrasp: Robust and efficient grasp perception in spatial and temporal domains. IEEE Trans. Robot. 2023, 5, 3929–3945. [Google Scholar] [CrossRef]
- Mahler, J.; Pokorny, F.T.; Hou, B.; Roderick, M.; Laskey, M.; Aubry, M.; Kohlhoff, K.; Kröger, T.; Kuffner, J.; Goldberg, K. Dex-net 1.0: A cloud-based network of 3D objects for robust grasp planning using a multi-armed bandit model with correlated rewards. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1954–1961. [Google Scholar]
- Zhang, Y.; Adin, V.; Bader, S.; Oelmann, B. Leveraging Acoustic Emission and Machine Learning for Concrete Materials Damage Classification on Embedded Devices. IEEE Trans. Instrum. Meas. 2023, 72, 2525108. [Google Scholar] [CrossRef]
- Lenz, I.; Lee, H.; Saxena, A. Deep learning for detecting robotic grasps. Int. J. Robot. Res. 2015, 34, 705–724. [Google Scholar] [CrossRef]
- Xie, Z.; Liang, X.; Roberto, C.J. Learning-based robotic grasping: A review. Front. Robot. AI 2023, 10, 1038658. [Google Scholar] [CrossRef] [PubMed]
- Sundermeyer, M.; Mousavian, A.; Triebel, R.; Fox, D. Contact-graspnet: Efficient 6-DOF grasp generation in cluttered scenes. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 4244–4250. [Google Scholar]
- Bicchi, A.; Kumar, V. Robotic grasping and contact: A review. In Proceedings of the 2000 ICRA Millennium Conference IEEE International Conference on Robotics and Automation Symposia Proceedings, San Francisco, CA, USA, 24–28 April 2000; IEEE: Piscataway, NJ, USA, 2000; pp. 348–353. [Google Scholar]
- Boubekri, N.; Chakraborty, P.J. Robotic grasping: Gripper designs, control methods and grasp configurations—A review of research. Int. J. Mech. Sci. 2002, 13, 520–531. [Google Scholar] [CrossRef]
- Joshi, S.; Kumra, S.; Sahin, F. Robotic grasping using deep reinforcement learning. In Proceedings of the 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE), Washington, DC, USA, 22–26 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 351–357. [Google Scholar]
- Guo, N.; Zhang, B.; Zhou, J.; Zhan, K.; Lai, S. Pose estimation and adaptable grasp configuration with point cloud registration and geometry understanding for fruit grasp planning. J. Comput. Agric. Eng. 2020, 179, 105818. [Google Scholar] [CrossRef]
- Ni, P.; Zhang, W.; Zhu, X.; Cao, Q. Pointnet++ grasping: Learning an end-to-end spatial grasp generation algorithm from sparse point clouds. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–4 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 4597–4603. [Google Scholar]
- Qian, K.; Jing, X.; Duan, Y.; Zhou, B.; Fang, F.; Xia, J.; Ma, X. Grasp pose detection with affordance-based task constraint learning in single-view point clouds. J. Robot. Autom. 2020, 100, 145–163. [Google Scholar] [CrossRef]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3D classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 77–85. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems 25 (NIPS 2012), Lake Tahoe, NV, USA, 3–6 December 2012; Volume 25. [Google Scholar]
- Zhou, L.; Sun, G.; Li, Y.; Li, W.; Su, Z.J. Point cloud denoising review: From classical to deep learning-based approaches. J. Geom. Model. 2022, 121, 101140. [Google Scholar] [CrossRef]
- Nguyen, V.-D. Constructing force-closure grasp. J. Robot. Res. 1988, 7, 157–171. [Google Scholar] [CrossRef]
- Pas, A.; Gualtieri, M.; Saenko, K.; Platt, R. Grasp pose detection in point clouds. Int. J. Robot. Res. 2017, 36, 1455–1473. [Google Scholar]
- Liang, H.; Ma, X.; Li, S.; Görner, M.; Tang, S.; Fang, B.; Sun, F.; Zhang, J. Pointnetgpd: Detecting grasp configurations from point sets. In Proceedings of the 2019 IEEE International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1954–1961. [Google Scholar]
- Dharbaneshwer, S.; Subramanian, S.J.; Kohlhoff, K.J.M. Robotic grasp analysis using deformable solid mechanics. J. Mech. Eng. 2019, 54, 1767–1784. [Google Scholar] [CrossRef]
- Pierson, H.A.; Gashler, M.S. Deep learning in robotics: A review of recent research. J. Robot. Res. 2017, 31, 821–835. [Google Scholar] [CrossRef]
- Billard, A.; Kragic, D. Trends and challenges in robot manipulation. Science 2019, 364, eaat8414. [Google Scholar] [CrossRef] [PubMed]
- Caldera, S.; Rassau, A.; Chai, D. Review of deep learning methods in robotic grasp detection. J. Mach. Interact. 2018, 2, 57. [Google Scholar] [CrossRef]
- Mohammed, M.Q.; Chung, K.L.; Chyi, C.S. Review of deep reinforcement learning-based object grasping: Techniques, open challenges, and recommendations. J. Intell. Autom. 2020, 8, 178450–178481. [Google Scholar] [CrossRef]
- Hinterstoisser, S.; Holzer, S.; Cagniart, C.; Ilic, S.; Konolige, K.; Navab, N.; Lepetit, V. Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes. In Proceedings of the 2011 International Conference on Computer Vision (ICCV), Barcelona, Spain, 6–13 November 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 858–865. [Google Scholar]
- Dong, M.; Zhang, J. A review of robotic grasp detection technology. J. Robot. Artif. Intell. 2023, 41, 3846–3885. [Google Scholar] [CrossRef]
- Hannah, R.; Aron, A.R. Towards real-world generalizability of a circuit for action-stopping. J. Neurosci. Res. 2021, 22, 538–552. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Han, D.; Qiao, Y.; Kim, J.U.; Bae, S.-H.; Lee, S.; Hong, C.S. Faster segment anything: Towards lightweight SAM for mobile applications. J. Comput. Vis. 2023, 1–12. [Google Scholar]
- Takaya, K.; Asai, T.; Kroumov, V.; Smarandache, F. Simulation environment for mobile robots testing using ROS and Gazebo. In Proceedings of the 2016 20th International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 19–21 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 157–162. [Google Scholar]
Dist. | Method\Target | Pen | Banana | Apple | Bottle | Can | Gamepad | Scissors | Case | Avg. |
---|---|---|---|---|---|---|---|---|---|---|
d1 | GPD | 46.2 | 54.7 | 72.1 | 73.3 | 56.9 | 52.8 | 63.8 | 50.8 | 46.8 |
PointNetGPD | 65.1 | 66.7 | 83.4 | 76.9 | 82.6 | 77.3 | 78.8 | 72.7 | 64.9 | |
Our Method | 85.4 | 90.3 | 96.3 | 94.5 | 92.1 | 86.1 | 80.8 | 86.4 | 85.6 | |
d2 | GPD | 52.1 | 56.1 | 71.2 | 70.9 | 60.4 | 63.4 | 73.5 | 68.3 | 50.8 |
PointNetGPD | 65.6 | 79.5 | 86.6 | 82.6 | 76.5 | 74.8 | 83.3 | 87.2 | 65.5 | |
Our Method | 87.4 | 90.8 | 91.3 | 92.6 | 88.4 | 86.8 | 83.2 | 84.2 | 87.1 | |
d3 | GPD | 40.2 | 37.3 | 36.5 | 50.3 | 47.2 | 31.1 | 34.9 | 40.8 | 41.1 |
PointNetGPD | 58.0 | 52.9 | 68.3 | 64.3 | 72.8 | 68.3 | 67.0 | 52.6 | 57.5 | |
Our Method | 85.6 | 80.8 | 86.2 | 80.5 | 85.9 | 76.1 | 78.9 | 79.8 | 85.8 |
Target | Box | Bottle | Glass Case | Scissors | Pen | Glue |
---|---|---|---|---|---|---|
GPD | 50 | 45 | 45 | 50 | 30 | 55 |
PointNetGPD | 60 | 65 | 75 | 55 | 50 | 75 |
Proposed Method | 95 | 90 | 100 | 95 | 100 | 95 |
Group | GPD | PointNetGPD | Our Method | |||
---|---|---|---|---|---|---|
Attempts Count | Success Rate (%) | Attempts Count | Success Rate (%) | Attempts Count | Success Rate (%) | |
1 | 51 | 50 | 45 | 80 | 27 | 100 |
2 | 47 | 60 | 41 | 75 | 30 | 95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, A.; Li, X.; Cen, K.; Hon, C. Adaptive Grasp Pose Optimization for Robotic Arms Using Low-Cost Depth Sensors in Complex Environments. Sensors 2025, 25, 909. https://doi.org/10.3390/s25030909
Chen A, Li X, Cen K, Hon C. Adaptive Grasp Pose Optimization for Robotic Arms Using Low-Cost Depth Sensors in Complex Environments. Sensors. 2025; 25(3):909. https://doi.org/10.3390/s25030909
Chicago/Turabian StyleChen, Aiguo, Xuanfeng Li, Kerui Cen, and Chitin Hon. 2025. "Adaptive Grasp Pose Optimization for Robotic Arms Using Low-Cost Depth Sensors in Complex Environments" Sensors 25, no. 3: 909. https://doi.org/10.3390/s25030909
APA StyleChen, A., Li, X., Cen, K., & Hon, C. (2025). Adaptive Grasp Pose Optimization for Robotic Arms Using Low-Cost Depth Sensors in Complex Environments. Sensors, 25(3), 909. https://doi.org/10.3390/s25030909