Flexible Hybrid Integration Hall Angle Sensor Compatible with the CMOS Process
Abstract
:1. Introduction
2. Design and Fabrication
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, B.; Lei, K.-M.; Zou, H.; Martins, R.P.; Mak, P.-I. Exploring the Performance of Hall Sensor with Substrate Bias Modulation in SOI Process. IEEE Sens. J. 2024, 24, 27365–27372. [Google Scholar] [CrossRef]
- Dung, T.T.H.; Trung, L.Q.; Kasai, N.; Le, M.; Luong, V.S. Development of differential hall sensors for pulsed eddy current testing using gaussian pulse excitation. Sens. Actuators A 2024, 379, 115998. [Google Scholar] [CrossRef]
- Gibiino, G.P.; Marchesi, M.; Cogliati, M.; Syeda, S.F.; Romani, A.; Traverso, P.A.; Crescentini, M. Experimental evaluation of Hall-effect current sensors in BCD10 technology. Measurement 2023, 220, 113289. [Google Scholar] [CrossRef]
- Lee, J.; Lee, D.; Jeong, M.; Kang, D. Research on hall sensor fault diagnosis and compensation method to improve motor control reliability. J. Magn. 2018, 23, 648–653. [Google Scholar] [CrossRef]
- Okuyama, T.; Kobayashi, K.; Otsuki, M.; Tanaka, M. Measurement of finger joint angle using a flexible polymer sensor. Int. J. Appl. Electromagn. Mech. 2016, 52, 951–957. [Google Scholar] [CrossRef]
- Wang, Z.G.; Wang, X.J.; Li, M.H.; Gao, Y.; Hu, Z.Q.; Nan, T.X.; Sun, N.X. Highly sensitive flexible magnetic sensor based on anisotropic magnetoresistance effect. Adv. Mater. 2016, 28, 9370–9379. [Google Scholar] [CrossRef]
- Wouters, C.; Vranković, V.; Rössler, C.; Sidorov, S.; Ensslin, K.; Wegscheider, W.; Hierold, C. Design and fabrication of an innovative three-axis Hall sensor. Sens. Actuators A Phys. 2015, 237, 62–71. [Google Scholar] [CrossRef]
- Masias, A.; Marcicki, J.; Paxton, W.A. Opportunities and Challenges of Lithium Ion Batteries in Automotive Applications. ACS Energy Lett. 2021, 6, 621–630. [Google Scholar] [CrossRef]
- Paliwal, S.; Yenuganti, S.; Manuvinakurake, M. Fabrication and testing of a Hall effect based pressure sensor. Sens. Rev. 2022, 42, 354–364. [Google Scholar] [CrossRef]
- Ishibashi, K.; Okada, I.; Shibasaki, I. High sensitivity hybrid Hall effect ICs with thin film hall elements. Sens. Mater. 2002, 14, 253–261. [Google Scholar]
- Chuang, Y.-C.; Cheng, T.-Y.; Tsai, Y.-C. Flexible Printed Circuit Board Strain Sensor Embedded in a Miniaturized Pneumatic Finger. IEEE Sens. J. 2022, 22, 22456–22463. [Google Scholar] [CrossRef]
- Hong, W.Q.; Guo, X.H.; Zhang, T.X.; Mu, S.W.; Wu, F.; Yan, Z.H.; Zhao, Y.N. Flexible strain sensor based on nickel microparticles/carbon black microspheres/polydimethylsiloxane conductive composites for human motion detection. ACS Appl. Mater. Interfaces 2024, 16, 32702–32712. [Google Scholar] [CrossRef]
- Jang, H.; Park, Y.J.; Chen, X.; Das, T.; Kim, M.; Ahn, J. Graphene-Based Flexible and Stretchable Electronics. Adv. Mater. 2016, 28, 4184–4202. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Guo, R.; Tay, B.K.; Yan, X. Flexible Ferroelectric Devices: Status and Applications. Adv. Funct. Mater. 2022, 32, 2205933. [Google Scholar] [CrossRef]
- Lee, H.; Kim, M.; Kim, I.; Lee, H. Flexible and stretchable optoelectronic devices using silver nanowires and graphene. Adv. Mater. 2016, 28, 4541–4548. [Google Scholar] [CrossRef]
- Karnaushenko, D.; Makarov, D.; Stöber, M.; Karnaushenko, D.D.; Baunack, S.; Schmidt, O.G. High performance magnetic sensorics for printable and flexible electronics. Adv. Mater. 2015, 27, 880–885. [Google Scholar] [CrossRef]
- Liu, W.L.; Liu, M.; Ma, R.; Zhang, R.Y.; Zhang, W.Q.; Yu, D.P.; Wang, H. Mechanical strain-tunable microwave magnetism in flexible CuFe2O4 epitaxial thin film for wearable sensors. Adv. Funct. Mater. 2018, 28, 201705928. [Google Scholar] [CrossRef]
- Yang, H.L.; Li, S.B.; Wu, Y.Z.; Bao, X.L.; Xiang, Z.Y.; Xie, Y.L.; Li, R.W. Advances in flexible magnetosensitive materials and devices for wearable electronics. Adv. Mater. 2024, 36, e2311996. [Google Scholar] [CrossRef]
- Zang, Y.; Zhang, F.; Huang, D.; Di, C.; Zhu, D. Sensitive Flexible Magnetic Sensors using Organic Transistors with Magnetic-Functionalized Suspended Gate Electrodes. Adv. Mater. 2015, 27, 7979–7985. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, Y.; Wei, Y.; Qiu, J. How Far for the Electronic Skin: From Multifunctional Material to Advanced Applications. Adv. Mater. Technol. 2023, 8, 202201352. [Google Scholar] [CrossRef]
- Ji, D.; Zhu, Y.; Li, M.; Fan, X.; Zhang, T.; Li, Y. Skin Comfort Sensation with Mechanical Stimulus from Electronic Skin. Materials 2024, 17, 2920. [Google Scholar] [CrossRef]
- Ma, Z.; Ding, C.; Li, L.; Tian, B. The Design of Decoupled Robotic Arm Based on Chain Transmission. Machines 2024, 12, 410. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, W.; Li, S.; Jiang, Y.; Zang, W.; Fu, W.; Zhang, L. A soft mimic robotic arm powered by dielectric elastomer actuator. Adv. Funct. Mater. 2024, 34, 202411229. [Google Scholar] [CrossRef]
- Luo, Y.; Sun, C.; Ma, H.; Wei, M.; Li, J.; Jian, J.; Li, L. Flexible passive integrated photonic devices with superior optical and mechanical performance. Opt. Express 2022, 30, 26534–26543. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Sun, C.; Wei, M.; Ma, H.; Wu, Y.; Chen, Z.; Dai, H.; Jian, J.; Sun, B.; Zhong, C.; et al. Integrated Flexible Microscale Mechanical Sensors Based on Cascaded Free Spectral Range-Free Cavities. Nano Lett. 2023, 23, 8898–8906. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Kim, J.; Won, S.M.; Ma, Y.; Kang, D.; Xie, Z.; Rogers, J.A. Battery-free, wireless sensors for full-body pressure and temperature mapping. Sci. Transl. Med. 2018, 10, eaan4950. [Google Scholar] [CrossRef] [PubMed]
- Gutruf, P.; Yin, R.T.; Lee, K.B.; Ausra, J.; Brennan, J.A.; Qiao, Y.; Rogers, J.A. Wireless, battery free, fully implantable multimodal and multisite pacemakers for applications in small animal models. Nat. Commun. 2019, 10, 5742. [Google Scholar] [CrossRef]
- Wang, Y.; Hasegawa, T.; Matsumoto, H.; Michinobu, T. Correction to “Significant Improvement of Unipolar n-Type Transistor Performances by Manipulating the Coplanar Backbone Conformation of Electron-Deficient Polymers via Hydrogen Bonding”. J. Am. Chem. Soc. 2021, 143, 21443. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Guo, H.; Harbuzaru, A.; Uddin, M.A.; ArrecheaMarcos, I.; Ling, S.; Guo, X. (Semi)ladder-type bithiophene imide-based all-acceptor semiconductors: Synthesis, structure-property correlations, and unipolar n-type transistor performance. J. Am. Chem. Soc. 2018, 140, 6095–6108. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Giri, G.; Ayzner, A.L.; Zoombelt, A.P.; Mannsfeld, S.C.B.; Chen, J.; Nordlund, D.; Toney, M.F.; Huang, J.; Bao, Z. Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nat. Commun. 2014, 5, 3005. [Google Scholar] [CrossRef]
- Daus, A.; Vaziri, S.; Chen, V.; Köroğlu, Ç.; Grady, R.W.; Bailey, C.S.; Lee, H.R.; Schauble, K.; Brenner, K.; Pop, E. High-performance flexible nanoscale transistors based on transition metal dichalcogenides. Nat. Electron. 2021, 4, 495–501. [Google Scholar] [CrossRef]
- Wang, Z.; Shaygan, M.; Otto, M.; Schall, D.; Neumaier, D. Flexible Hall sensors based on graphene. Nanoscale 2016, 8, 7683–7687. [Google Scholar] [CrossRef]
- Morvic, M.; Betko, J. Planar Hall effect in Hall sensors made from InP/InGaAs heterostructure. Sens. Actuators A Phys. 2005, 120, 130–133. [Google Scholar] [CrossRef]
- Xu, Y.; Lalwani, A.V.; Arora, K.; Zheng, Z.; Renteria, A.; Senesky, D.G.G.; Wang, P. Hall-effect sensor design with physics-informed gaussian process modeling. IEEE Sens. J. 2022, 22, 22519–22528. [Google Scholar] [CrossRef]
- Paun, M.-A.; Sallese, J.-M.; Kayal, M. Hall Effect Sensors Design, Integration and Behavior Analysis. J. Sens. Actuator Netw. 2013, 2, 85–97. [Google Scholar] [CrossRef]
- Riem, R.; Raman, J.; Rombouts, P. A 2 MS/s Full Bandwidth Hall System with Low Offset Enabled by Randomized Spinning. Sensors 2022, 22, 6069. [Google Scholar] [CrossRef] [PubMed]
- Heeley, A.D.; Hobbs, M.J.; Willmott, J.R. Zero Drift Infrared Radiation Thermometer Using Chopper Stabilised Pre-Amplifier. Appl. Sci. 2020, 10, 4843. [Google Scholar] [CrossRef]
- Kusuda, Y. A 5.6 nv/√hz chopper operational amplifier achieving a 0.5 μv maximum offset over rail to rail input range with adaptive clock boosting technique. IEEE J. Solid-State Circuits 2016, 51, 2119–2128. [Google Scholar] [CrossRef]
- Oh, J.Y.; Lee, Y.; Lee, T. Skin-mountable functional electronic materials for bio-integrated devices. Adv. Healthc. Mater. 2024, 13, 202303797. [Google Scholar] [CrossRef]
- Donolato, M.; Tollan, C.; Porro, J.M.; Berger, A.; Vavassori, P. Flexible and Stretchable Polymers with Embedded Magnetic Nanostructures. Adv. Mater. 2012, 25, 623–629. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Fang, Y.; Lv, Y.; Zheng, H.; Guan, K. Flexible Hybrid Integration Hall Angle Sensor Compatible with the CMOS Process. Sensors 2025, 25, 927. https://doi.org/10.3390/s25030927
Luo Y, Fang Y, Lv Y, Zheng H, Guan K. Flexible Hybrid Integration Hall Angle Sensor Compatible with the CMOS Process. Sensors. 2025; 25(3):927. https://doi.org/10.3390/s25030927
Chicago/Turabian StyleLuo, Ye, Youtong Fang, Yang Lv, Huaxiong Zheng, and Ke Guan. 2025. "Flexible Hybrid Integration Hall Angle Sensor Compatible with the CMOS Process" Sensors 25, no. 3: 927. https://doi.org/10.3390/s25030927
APA StyleLuo, Y., Fang, Y., Lv, Y., Zheng, H., & Guan, K. (2025). Flexible Hybrid Integration Hall Angle Sensor Compatible with the CMOS Process. Sensors, 25(3), 927. https://doi.org/10.3390/s25030927