Cognitive Radio Networks: Technologies, Challenges and Applications
1. Introduction and Current Trends in the Field
2. Scope of Special Issue and Contributions
- Spectrum sensing, spectrum sharing, and spectrum learning and prediction;
- Machine learning techniques for Cognitive Radio Networks;
- Energy-harvesting Cognitive Radio Networks;
- Challenges and issues in designing Cognitive Radio Networks and communications;
- High-order cumulants in Cognitive Radio Networks.
3. Conclusions
Conflicts of Interest
List of Contributions
- 1.
- Cervantes-Junco, G.B.; Rodriguez-Colina, E.; Palacios-Luengas, L.; Pascoe-Chalke, M.; Lara-Velzquez, P.; Marceln-Jimnez, R. Decision-making algorithm with geographic mobility for cognitive radio. Sensors 2024, 24, 1540. https://doi.org/10.3390/s24051540.
- 2.
- Luo, Q.; Li, H. Respecting partial privacy of unstructured data via spectrum-based encoder. Sensors 2024, 24, 1015. https://doi.org/10.3390/s24031015.
- 3.
- Dgani, B.; Cohen, I. Efficient cumulant-based automatic modulation classification using machine learning. Sensors 2024, 24, 701. https://doi.org/10.3390/s24020701.
- 4.
- Rugini, L.; Banelli, P. Performance analysis of centralized cooperative schemes for compressed sensing. Sensors 2024, 24, 661. https://doi.org/10.3390/s24020661.
- 5.
- Kim, H.; Kim, Y.-J.; Kim, W.-T. Multitask learning-based deep signal identification for advanced spectrum sensing. Sensors 2023, 23, 9806. https://doi.org/10.3390/s23249806.
- 6.
- Zhang, Y.; Wu, W.; He, W.; Zhao, N. Algorithm design and convergence analysis for coexistence of cognitive radio networks in unlicensed spectrum. Sensors 2023, 23, 9705. https://doi.org/10.3390/s23249705.
- 7.
- Wang, P.; Yao, J.; Pu, Y.; Zhang, S.; Wen, L. Study of interference detection of rail transit wireless communication system based on fourth-order cyclic cumulant. Sensors 2023, 23, 8291. https://doi.org/10.3390/s23198291.
- 8.
- Yu, W.; Wang, L.; Song, J.; He, L.; Wang, Y. Environment-aware rate adaptation based on occasional request and robust adjustment in 802.11 networks. Sensors 2023, 23, 7889. https://doi.org/10.3390/s23187889.
- 9.
- Zheng, R.; Li, X.; Chen, Y. An overview of cognitive radio technology and its applications in civil aviation. Sensors 2023, 23, 6125. https://doi.org/10.3390/s23136125.
- 10.
- Jiang, K.; Ma, C.; Lin, R.; Wang, J.; Jiang, W.; Hou, H. Free-rider games for cooperative spectrum sensing and access in CIoT networks. Sensors 2023, 23, 5828. https://doi.org/10.3390/s23135828.
- 11.
- Molina-Tenorio, Y.; Prieto-Guerrero, A.; Aguilar-Gonzalez, R.; Lopez-Benitez, M. Cooperative multiband spectrum sensing using radio environment maps and neural networks. Sensors 2023, 23, 5209. https://doi.org/10.3390/s23115209.
- 12.
- Zhang, C.; Liao, X.; Wu, Z.; Qiu, G.; Chen, Z.; Yu, Z. Deep Q-learning-based buffer-aided relay selection for reliable and secure communications in two-hop wireless relay networks. Sensors 2023, 23, 4822. https://doi.org/10.3390/s23104822.
- 13.
- Wang, J.; Dong, Y.; Zhao, S.; Zhang, Z. A high-precision vehicle detection and tracking method based on the attention mechanism. Sensors 2023, 23, 724. https://doi.org/10.3390/s23020724.
References
- Song, Z.; She, Y.; Yang, J.; Peng, J.; Gao, Y.; Tafazolli, R. Nonuniform Sampling Pattern Design for Compressed Spectrum Sensing in Mobile Cognitive Radio Networks. IEEE Trans. Mobile. Comput. 2024, 23, 8680–8693. [Google Scholar] [CrossRef]
- Ge, J.; Liang, Y.-C.; Wang, S.; Sun, C. RIS-Assisted Cooperative Spectrum Sensing for Cognitive Radio Networks. IEEE Trans. Wireless Commun. 2024, 23, 12547–12562. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Acharya, T.; Bhattacharya, U. Cognitive radio based spectrum sharing models for multicasting in 5G cellular networks: A survey. Comput. Netw. 2022, 208, 108870. [Google Scholar] [CrossRef]
- Kaur, A.; Kumar, K. Imperfect CSI Based Intelligent Dynamic Spectrum Management Using Cooperative Reinforcement Learning Framework in Cognitive Radio Networks. IEEE Trans. Mobile. Comput. 2022, 21, 1672–1683. [Google Scholar] [CrossRef]
- Chen, L.; Lu, Z.; Zhou, P.; Xu, J. Learning Optimal Sniffer Channel Assignment for Small Cell Cognitive Radio Networks. In Proceedings of the 2020 IEEE International Conference on Computer Communications (INFOCOM), Toronto, ON, Canada, 6–9 July 2020; pp. 656–665. [Google Scholar]
- Chen, Z.; Zhang, Z.; Xiao, Z.; Yang, Z.; Jin, R. Deep Learning-Based Multi-User Positioning in Wireless FDMA Cellular Networks. IEEE J. Sel. Areas Commun. 2023, 41, 3848–3862. [Google Scholar] [CrossRef]
- Cicioğlu, M.; Cicioğlu, S.; Çalhan, A. SDN-enabled cognitive radio network architecture. IET Commun. 2020, 14, 3153–3160. [Google Scholar] [CrossRef]
- Luong, N.C.; Anh, T.T.; Xiong, Z.; Niyato, D.; Kim, D.I. Joint Time Scheduling and Transaction Fee Selection in Blockchain-Based RF-Powered Backscatter Cognitive Radio Network. Comput. Netw. 2022, 214, 109135. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Zheng, K.; Liu, J. AoI minimization of ambient backscatter-assisted EH-CRN with cooperative spectrum sensing. Comput. Netw. 2024, 245, 110389. [Google Scholar] [CrossRef]
- Wen, Y.; Liu, L.; Li, J.; Li, Y.; Wang, K.; Yu, S.; Guizani, M. Covert Communications Aided by Cooperative Jamming in Overlay Cognitive Radio Networks. IEEE Trans. Mobile Comput. 2024, 23, 12878–12891. [Google Scholar] [CrossRef]
- Shahid, S.M.; Kwon, S. Distributed Robust Channel Allocation for Clustered Cognitive Radio-Based IoT Networks Using Graph Theory. Comput. Netw. 2022, 218, 109406. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, F.; Lin, W.; Ding, Z.; Al-Dhahir, N. Cooperative Hybrid Nonorthogonal Multiple Access-Based Mobile-Edge Computing in Cognitive Radio Networks. IEEE Trans. Cogn. Commun. Netw. 2022, 8, 1104–1117. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Zheng, K.; Liu, X.; Li, Z.; Liu, J. Cognitive Radio Networks: Technologies, Challenges and Applications. Sensors 2025, 25, 1011. https://doi.org/10.3390/s25041011
Xu Y, Zheng K, Liu X, Li Z, Liu J. Cognitive Radio Networks: Technologies, Challenges and Applications. Sensors. 2025; 25(4):1011. https://doi.org/10.3390/s25041011
Chicago/Turabian StyleXu, Yang, Kechen Zheng, Xiaoying Liu, Zhao Li, and Jia Liu. 2025. "Cognitive Radio Networks: Technologies, Challenges and Applications" Sensors 25, no. 4: 1011. https://doi.org/10.3390/s25041011
APA StyleXu, Y., Zheng, K., Liu, X., Li, Z., & Liu, J. (2025). Cognitive Radio Networks: Technologies, Challenges and Applications. Sensors, 25(4), 1011. https://doi.org/10.3390/s25041011