Intelligent Energy Efficiency Maximization for Wirelessly-Powered UAV-Assisted Secure Sensor Network
Abstract
:1. Introduction
2. System and Channel Model
2.1. TDMA
2.2. CDMA
3. Energy Efficiency Maximization
3.1. TDMA
3.1.1. Optimization Without QoS Constraint
3.1.2. Optimization with QoS Constraint
3.2. CDMA
DDPG Solution
Algorithm 1 pseudo-code for action policy training |
|
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, X.; Luong, N.C.; Hoang, D.T.; Niyato, D.; Xiao, Y.; Wang, P. Secure Wirelessly Powered Networks at the Physical Layer: Challenges, Countermeasures, and Road Ahead. Proc. IEEE 2013, 110, 1410–1423. [Google Scholar] [CrossRef]
- Zhu, T.; Shen, L. Secure and Efficient Certificateless Linearly Homomorphic Signature Scheme for Wireless Sensor Networks. In Proceedings of the International Conference on Big Data and Privacy Computing, Macau, China, 10–12 January 2024; pp. 113–121. [Google Scholar]
- Lei, H.; Luo, H.; Park, K.H.; Ansari, I.S.; Lei, W.; Pan, G.; Alouini, M.S. On Secure Mixed RF-FSO Systems with TAS and Imperfect CSI. IEEE Wirel. Commun. Lett. 2020, 68, 4461–4475. [Google Scholar] [CrossRef]
- Saxena, V.N.; Gupta, J.; Dwivedi, V.K. Secured End-to-End FSO-VLC-Based IoT Network with Randomly Positioned VLC: Known and Unknown CSI. IEEE Internet Things J. 2023, 10, 1347–1357. [Google Scholar] [CrossRef]
- He, D.; Liu, C.; Wang, H.; Quek, T.Q.S. Learning-Based Wireless Powered Secure Transmission. IEEE Wirel. Commun. Lett. 2019, 8, 600–603. [Google Scholar] [CrossRef]
- Feng, R.; Li, Q.; Zhang, Q.; Qin, J. Robust Secure Transmission in MISO Simultaneous Wireless Information and Power Transfer System. IEEE Trans. Veh. Technol. 2015, 64, 400–405. [Google Scholar] [CrossRef]
- Limbasiya, T.; Das, D.; Das, S.K. MComIoV: Secure and Energy-Efficient Message Communication Protocols for Internet of Vehicles. IEEE/ACM Trans. Netw. 2021, 29, 1349–1361. [Google Scholar] [CrossRef]
- Nghia, N.T.; Tuan, H.D.; Duong, T.Q.; Poor, H.V. MIMO Beamforming for Secure and Energy-Efficient Wireless Communication. IEEE Signal Process. Lett. 2017, 24, 236–239. [Google Scholar] [CrossRef]
- Cai, Y.; Wei, Z.; Li, R.; Ng, D.W.K.; Yuan, J. Joint Trajectory and Resource Allocation Design for Energy-Efficient Secure UAV Communication Systems. IEEE Trans. Commun. 2020, 68, 4536–4553. [Google Scholar] [CrossRef]
- Guo, S.; Wang, F.; Yang, Y.; Xiao, B. Energy-Efficient Cooperative Transmission for Simultaneous Wireless Information and Power Transfer in Clustered Wireless Sensor Networks. IEEE Trans. Commun. 2015, 63, 4405–4417. [Google Scholar] [CrossRef]
- Tang, J.; Shojaeifard, A.; So, D.K.C.; Wong, K.K.; Zhao, N. Energy Efficiency Optimization for CoMP-SWIPT Heterogeneous Networks. IEEE Trans. Commun. 2018, 66, 6368–6383. [Google Scholar] [CrossRef]
- Yang, K.; Yu, Q.; Leng, S.; Fan, B.; Wu, F. Data and Energy Integrated Communication Networks for Wireless Big Data. IEEE Access 2016, 4, 713–723. [Google Scholar] [CrossRef]
- Sun, Q.; Li, L.; Mao, J. Simultaneous Information and Power Transfer Scheme for Energy Efficient MIMO Systems. IEEE Trans. Veh. Technol. 2014, 18, 600–603. [Google Scholar] [CrossRef]
- Akbar, S.; Deng, Y.; Nallanathan, A.; Elkashlan, M.; Aghvami, A. Simultaneous Wireless Information and Power Transfer in K-Tier Heterogeneous Cellular Networks. IEEE Trans. Wireless Commun. 2016, 15, 5804–5818. [Google Scholar] [CrossRef]
- Huang, H.; Li, C.; Wu, C.; Wu, F.; Li, L. Energy Efficiency Optimization Method under the Scene of Wireless Information and Energy Simultaneous Transmission. In Proceedings of the International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, Zhengzhou, China, 18–20 October 2018; pp. 321–328. [Google Scholar]
- Ju, H.; Zhang, R. A Novel Mode Switching Scheme Utilizing Random Beamforming for Opportunistic Energy Harvesting. IEEE Trans. Wirel. Commun. 2014, 13, 2150–2162. [Google Scholar] [CrossRef]
- Nasir, A.A.; Tuan, H.D.; Duong, T.Q.; Poor, H.V. Secure and Energy-Efficient Beamforming for Simultaneous Information and Energy Transfer. IEEE Trans. Wirel. Commun. 2017, 16, 7523–7537. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Han, L. An Energy Efficient Internet of Things Network Using Restart Artificial Bee Colony and Wireless Power Transfer. IEEE Access 2019, 7, 12686–12695. [Google Scholar] [CrossRef]
- Sheng, M.; Wang, L.; Wang, X.; Zhang, Y.; Xu, C.; Li, J. Energy Efficient Beamforming in MISO Heterogeneous Cellular Networks with Wireless Information and Power Transfer. IEEE J. Sel. Areas Commun. 2016, 34, 954–968. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Chen, X. Energy-Efficient Optimization for Wireless Information and Power Transfer in Large-Scale MIMO Systems Employing Energy Beamforming. IEEE Wirel. Commun. Lett. 2013, 2, 667–670. [Google Scholar] [CrossRef]
- He, S.; Huang, Y.; Jin, S.; Yu, F.; Yang, L. Max-Min Energy Efficient Beamforming for Multicell Multiuser Joint Transmission Systems. IEEE Commun. Lett. 2013, 17, 1956–1959. [Google Scholar] [CrossRef]
- Wang, C.; Li, J.; Yang, Y.; Ye, F. Combining Solar Energy Harvesting with Wireless Charging for Hybrid Wireless Sensor Networks. IEEE Trans. Mob. Comput. 2018, 17, 560–576. [Google Scholar] [CrossRef]
- Li, D.; Saad, W.; Guvenc, I.; Mehbodniya, A.; Adachi, F. Decentralized Energy Allocation for Wireless Networks with Renewable Energy Powered Base Stations. IEEE Trans. Commun. 2015, 63, 2126–2142. [Google Scholar] [CrossRef]
- Mao, Y.; Zhang, J.; Letaief, K.B. Grid Energy Consumption and QoS Tradeoff in Hybrid Energy Supply Wireless Networks. IEEE Trans. Wirel. Commun. 2016, 15, 3573–3586. [Google Scholar] [CrossRef]
- Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Harley, T.; Lillicrap, T.P.; Silver, D.; Kavukcuoglu, K. Asynchronous Methods for Deep Reinforcement Learning. In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 1–10. [Google Scholar]
- Liu, C.H.; Chen, Z.; Zhan, Y. Energy-Efficient Distributed Mobile Crowd Sensing: A Deep Learning Approach. IEEE J. Sel. Areas Commun. 2019, 37, 1262–1276. [Google Scholar] [CrossRef]
- Liu, C.H.; Ma, X.; Gao, X.; Tang, J. Distributed Energy-Efficient Multi-UAV Navigation for Long-Term Communication Coverage by Deep Reinforcement Learning. IEEE Trans. Mob. Comput. 2019, 19, 1274–1285. [Google Scholar] [CrossRef]
- Qiu, C.; Hu, Y.; Chen, Y.; Zeng, B. Deep Deterministic Policy Gradient (DDPG)-Based Energy Harvesting Wireless Communications. IEEE Internet Things J. 2019, 6, 8577–8588. [Google Scholar] [CrossRef]
- Smida, B.; Affes, S.; Jamaoui, K.; Mermelstein, P. A Multicarrier-CDMA Space–Time Receiver with Full-Interference-Suppression Capabilities. IEEE Trans. Veh. Technol. 2008, 57, 363–379. [Google Scholar] [CrossRef]
- Xu, D.; Li, Q. Joint Power Control and Time Allocation for Wireless Powered Underlay Cognitive Radio Networks. IEEE Commun. Lett. 2017, 6, 294–297. [Google Scholar] [CrossRef]
- Blondeau, F.; Monir, A. Evaluation of the Lambert W function and application to generation of generalized Gaussian noise with exponent 1/2. IEEE Trans. Signal Process. 2002, 50, 2610–2615. [Google Scholar]
Parameter | Meaning | Value |
---|---|---|
Noise Power | 1 Watt | |
B | Available Bandwidth | 10 kHz |
Path Loss Exponent | 2 | |
PC | Circuit Power of Source Node | 0.01 Watt |
DC Conversion Efficiency | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, F.; Zhang, X. Intelligent Energy Efficiency Maximization for Wirelessly-Powered UAV-Assisted Secure Sensor Network. Sensors 2025, 25, 1534. https://doi.org/10.3390/s25051534
Xu F, Zhang X. Intelligent Energy Efficiency Maximization for Wirelessly-Powered UAV-Assisted Secure Sensor Network. Sensors. 2025; 25(5):1534. https://doi.org/10.3390/s25051534
Chicago/Turabian StyleXu, Fang, and Xinyu Zhang. 2025. "Intelligent Energy Efficiency Maximization for Wirelessly-Powered UAV-Assisted Secure Sensor Network" Sensors 25, no. 5: 1534. https://doi.org/10.3390/s25051534
APA StyleXu, F., & Zhang, X. (2025). Intelligent Energy Efficiency Maximization for Wirelessly-Powered UAV-Assisted Secure Sensor Network. Sensors, 25(5), 1534. https://doi.org/10.3390/s25051534