Leaky Coupled Waveguide-Plasmon Modes for Enhanced Light–Matter Interaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Nanophotonic Structure
2.2. Optical Set-Up
2.3. Materials for Sensing Experiments
2.4. Hexanal Absorption for Vibrational Strong Coupling Investigations
2.5. Modeling the Dielectric Constant of Hexanal
3. Results and Discussion
3.1. Investigating LCWPRs for Sensing
3.2. Investigating the Potential of LCWPRs for Vibrational Strong Coupling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 1985, 57, 783. [Google Scholar] [CrossRef]
- Fleischmann, M.; Hendra, P.J.; McQuillan, A.J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166. [Google Scholar] [CrossRef]
- Jeanmaire, D.L.; Van Duyne, R.P. Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 1977, 84, 1–20. [Google Scholar] [CrossRef]
- Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L.T.; Itzkan, I.; Dasari, R.R.; Feld, M.S. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667. [Google Scholar] [CrossRef]
- Nie, S.; Emory, S.R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106. [Google Scholar] [CrossRef]
- Shalabney, A.; Abdulhalim, I. Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors. Sens. Actuators A Phys. 2010, 160, 24–32. [Google Scholar] [CrossRef]
- Shalabney, A.; Abdulhalim, I. Sensitivity-enhancement methods for surface plasmon sensors. Laser Photonics Rev. 2011, 5, 571–606. [Google Scholar] [CrossRef]
- Homola, J.; Piliarik, M. Surface Plasmon Resonance Sensor. In Surface Plasmon Resonance Based Sensors; Series on Chemical Sensors and Biosensors; Springer: Berlin/Heidelberg, Germany, 2006; pp. 45–69. [Google Scholar]
- Homola, J.; Yee, S.S.; Gauglitz, G. Surface plasmon resonance sensors. Sens. Actuators B Chem. 1999, 54, 3–15. [Google Scholar] [CrossRef]
- Shalabney, A.; Abdulhalim, I. Figure-of-merit enhancement of surface plasmon resonance sensors in the spectral interrogation. Opt. Lett. 2012, 37, 1175–1177. [Google Scholar] [CrossRef]
- Chen, T.; Xin, J.; Chang, S.J.; Chen, C.J.; Liu, J.T. Surface plasmon resonance (SPR) combined technology: A powerful tool for investigating interface phenomena. Adv. Mater. Interfaces 2023, 10, 2202202. [Google Scholar] [CrossRef]
- Li, M.; Cushing, S.K.; Wu, N. Plasmon-enhanced optical sensors: A review. Analyst 2015, 140, 386–406. [Google Scholar] [CrossRef]
- Szunerits, S.; Boukherroub, R. Propagating surface plasmon polaritons. In Introduction to Plasmonics: Advances and Applications; Jenny Stanford Publishing: New York, NY, USA, 2015; p. 4. [Google Scholar]
- Bajaj, A.; Abutoama, M.; Isaacs, S.; Abuleil, M.J.; Yaniv, K.; Kushmaro, A.; Modic, M.; Cvelbar, U.; Abdulhalim, I. Biofilm growth monitoring using guided wave ultralong-range Surface Plasmon Resonance: A proof of concept. Biosens. Bioelectron. 2023, 228, 115204. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Verma, R.; Gupta, B.D. Surface plasmon resonance based fiber optic sensor for the detection of low water content in ethanol. Sens. Actuators B Chem. 2011, 153, 194–198. [Google Scholar] [CrossRef]
- Bhatia, P.; Gupta, B.D. Surface-plasmon-resonance-based fiber-optic refractive index sensor: Sensitivity enhancement. Appl. Opt. 2011, 50, 2032–2036. [Google Scholar] [CrossRef] [PubMed]
- Parriaux, O.; Veldhuis, G.J. Normalized analysis for the sensitivity optimization of integrated optical evanescent-wave sensors. J. Light. Technol. 1998, 16, 573. [Google Scholar] [CrossRef]
- Slavík, R.; Homola, J. Ultrahigh resolution long range surface plasmon-based sensor. Sens. Actuators B Chem. 2007, 123, 10–12. [Google Scholar] [CrossRef]
- Isaacs, S.; Harté, E.D.; Alves, I.; Abdulhalim, I. Improved detection of plasmon waveguide resonance using diverging beam, liquid crystal retarder, and application to lipid orientation determination. Sensors 2019, 19, 1402. [Google Scholar] [CrossRef]
- Isaacs, S.; Abdulhalim, I. Long range surface plasmon resonance with ultra-high penetration depth for self-referenced sensing and ultra-low detection limit using diverging beam approach. Appl. Phys. Lett. 2015, 106, 193701. [Google Scholar] [CrossRef]
- Salamon, Z.; Macleod, H.A.; Tollin, G. Coupled plasmon-waveguide resonators: A new spectroscopic tool for probing proteolipid film structure and properties. Biophys. J. 1997, 73, 2791–2797. [Google Scholar] [CrossRef]
- Salamon, Z.; Lindblom, G.; Tollin, G. Plasmon-waveguide resonance and impedance spectroscopy studies of the interaction between penetratin and supported lipid bilayer membranes. Biophys. J. 2003, 84, 1796–1807. [Google Scholar] [CrossRef]
- Salamon, Z.; Tollin, G. Surface plasmon spectroscopy: A new biophysical tool for probing membrane structure and function. Biomembr. Struct. 1997, 20, 186. [Google Scholar]
- Rascol, E.; Villette, S.; Harté, E.; Alves, I.D. Plasmon waveguide resonance: Principles, applications and historical perspectives on instrument development. Molecules 2021, 26, 6442. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, F.; Maisonneuve, M.; Meunier, M.; Aitchison, J.S.; Mojahedi, M. An improved refractive index sensor based on genetic optimization of plasmon waveguide resonance. Opt. Express 2013, 21, 20863–20872. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Goddard, N.J. Leaky waveguides (LWs) for chemical and biological sensing—A review and future perspective. Sens. Actuators B Chem. 2020, 322, 128628. [Google Scholar] [CrossRef]
- Hayashi, S.; Nesterenko, D.V.; Rahmouni, A.; Sekkat, Z. Observation of Fano line shapes arising from coupling between surface plasmon polariton and waveguide modes. Appl. Phys. Lett. 2016, 108, 051101. [Google Scholar] [CrossRef]
- Wang, J.; Sun, J.; Sun, S.; Zhang, H.; Wang, Q.; Yang, J.; Mei, Y. Numerical simulation of electromagnetically induced transparency in composite metamaterial. Phys. Scr. 2025, 100, 025512. [Google Scholar] [CrossRef]
- Wang, P.; Nasir, M.E.; Krasavin, A.V.; Dickson, W.; Jiang, Y.; Zayats, A.V. Plasmonic metamaterials for nanochemistry and sensing. Acc. Chem. Res. 2019, 52, 3018–3028. [Google Scholar] [CrossRef]
- Xiong, J.; Wang, J.; Liu, X.; Zhang, H.; Wang, Q.; Sun, J.; Zhang, B. Enhanced spontaneous radiation of quantum dots based on modulated anapole states in dielectric metamaterial. Opt. Express 2024, 32, 19910–19923. [Google Scholar] [CrossRef]
- Sreekanth, K.V.; Alapan, Y.; ElKabbash, M.; Ilker, E.; Hinczewski, M.; Gurkan, U.A.; De Luca, A.; Strangi, G. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater. 2016, 15, 621–627. [Google Scholar] [CrossRef]
- He, M.; Wang, Q.; Zhang, H.; Xiong, J.; Liu, X.; Wang, J. Analog electromagnetic induced transparency of T-type Si-based metamaterial and its applications. Phys. Scr. 2024, 99, 035506. [Google Scholar] [CrossRef]
- Skivesen, N.; Horvath, R.; Pedersen, H.C. Optimization of metal-clad waveguide sensors. Sens. Actuators B Chem. 2005, 106, 668–676. [Google Scholar]
- Dovzhenko, D.S.; Ryabchuk, S.V.; Rakovich, Y.P.; Nabiev, I.R. Light–matter interaction in the strong coupling regime: Configurations, conditions, and applications. Nanoscale 2018, 10, 3589–3605. [Google Scholar] [CrossRef]
- Flick, J.; Rivera, N.; Narang, P. Strong light-matter coupling in quantum chemistry and quantum photonics. Nanophotonics 2018, 7, 1479–1501. [Google Scholar] [CrossRef]
- Garcia-Vidal, F.J.; Ciuti, C.; Ebbesen, T.W. Manipulating matter by strong coupling to vacuum fields. Science 2021, 373, eabd0336. [Google Scholar] [CrossRef]
- Ebbesen, T.W. Hybrid light–matter states in a molecular and material science perspective. Acc. Chem. Res. 2016, 49, 2403–2412. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, J.A.; Liscio, A.; Schwartz, T.; Canaguier-Durand, A.; Genet, C.; Palermo, V.; Samori, P.; Ebbesen, T.W. Tuning the work-function via strong coupling. Adv. Mater. 2013, 25, 2481–2485. [Google Scholar] [CrossRef]
- Orgiu, E.; George, J.; Hutchison, J.A.; Devaux, E.; Dayen, J.F.; Doudin, B.; Stellacci, F.; Genet, C.; Schachenmayer, J.; Genes, C.; et al. Conductivity in organic semiconductors hybridized with the vacuum field. Nat. Mater. 2015, 14, 1123–1129. [Google Scholar] [CrossRef]
- Zhong, X.; Chervy, T.; Wang, S.; George, J.; Thomas, A.; Hutchison, J.A.; Genet, C.; Ebbesen, T.W. Non-radiative energy transfer mediated by hybrid light-matter states. Angew. Chem. 2016, 128, 6310–6314. [Google Scholar] [CrossRef]
- Thomas, A.; Lethuillier-Karl, L.; Nagarajan, K.; Vergauwe, R.M.; George, J.; Chervy, T.; Shalabney, A.; Devaux, E.; Genet, C.; Moran, j.; et al. Tilting a ground-state reactivity landscape by vibrational strong coupling. Science 2019, 363, 615–619. [Google Scholar] [CrossRef]
- Nagarajan, K.; Thomas, A.; Ebbesen, T.W. Chemistry under vibrational strong coupling. J. Am. Chem. Soc. 2021, 143, 16877–16889. [Google Scholar] [CrossRef] [PubMed]
- Vergauwe, R.M.; Thomas, A.; Nagarajan, K.; Shalabney, A.; George, J.; Chervy, T.; Seidel, M.; Devaux, E.; Torbeev, V.; Ebbesen, T.W. Modification of enzyme activity by vibrational strong coupling of water. Angew. Chem. Int. Ed. 2019, 58, 15324–15328. [Google Scholar] [CrossRef] [PubMed]
- Ahn, W.; Triana, J.F.; Recabal, F.; Herrera, F.; Simpkins, B.S. Modification of ground-state chemical reactivity via light–matter coherence in infrared cavities. Science 2023, 380, 1165–1168. [Google Scholar] [CrossRef]
- Simpkins, B.S.; Dunkelberger, A.D.; Owrutsky, J.C. Mode-specific chemistry through vibrational strong coupling (or a wish come true). J. Phys. Chem. C 2021, 125, 19081–19087. [Google Scholar] [CrossRef]
- Lather, J.; Bhatt, P.; Thomas, A.; Ebbesen, T.W.; George, J. Cavity catalysis by cooperative vibrational strong coupling of reactant and solvent molecules. Angew. Chem. Int. Ed. 2019, 58, 10635–10638. [Google Scholar] [CrossRef]
- Wang, D.S.; Neuman, T.; Yelin, S.F.; Flick, J. Cavity-modified unimolecular dissociation reactions via intramolecular vibrational energy redistribution. J. Phys. Chem. Lett. 2022, 13, 3317–3324. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.S.; Flick, J.; Yelin, S.F. Chemical reactivity under collective vibrational strong coupling. J. Chem. Phys. 2022, 157, 224304. [Google Scholar] [CrossRef] [PubMed]
- Shalabney, A.; George, J.; Hutchison, J.A.; Pupillo, G.; Genet, C.; Ebbesen, T.W. Coherent coupling of molecular resonators with a microcavity mode. Nat. Commun. 2015, 6, 5981. [Google Scholar] [CrossRef]
- Long, J.P.; Simpkins, B.S. Coherent coupling between a molecular vibration and Fabry–Perot optical cavity to give hybridized states in the strong coupling limit. ACS Photonics 2015, 2, 130–136. [Google Scholar] [CrossRef]
- George, J.; Shalabney, A.; Hutchison, J.A.; Genet, C.; Ebbesen, T.W. Liquid-Phase Vibrational Strong Coupling. J. Phys. Chem. Lett. 2015, 6, 1027–1031. [Google Scholar] [CrossRef]
- Mahajna, S.; Neumann, M.; Eyal, O.; Shalabney, A. Plasmon-Waveguide Resonances with Enhanced Figure of Merit and Their Potential for Anisotropic Biosensing in the Near Infrared Region. J. Sens. 2016, 2016, 1898315. [Google Scholar] [CrossRef]
- Polyanskiy, M.N. Refractiveindex. info database of optical constants. Sci. Data 2024, 11, 94. [Google Scholar] [CrossRef] [PubMed]
- Kedenburg, S.; Vieweg, M.; Gissibl, T.; Giessen, H. Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region. Opt. Mater. Express 2012, 2, 1588–1611. [Google Scholar] [CrossRef]
- Oughstun, K.E.; Cartwright, N.A. On the Lorentz-Lorenz formula and the Lorentz model of dielectric dispersion. Opt. Express 2003, 11, 1541–1546. [Google Scholar] [CrossRef] [PubMed]
- Rakić, A.D.; Djurišić, A.B.; Elazar, J.M.; Majewski, M.L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 1998, 37, 5271–5283. [Google Scholar] [CrossRef]
- Salamon, Z.; Tollin, G. Optical anisotropy in lipid bilayer membranes: Coupled plasmon-waveguide resonance measurements of molecular orientation, polarizability, and shape. Biophys. J. 2001, 80, 1557–1567. [Google Scholar] [CrossRef] [PubMed]
- Lahav, A.; Shalabaney, A.; Abdulhalim, I. Surface plasmon sensor with enhanced sensitivity using top nano dielectric layer. J. Nanophotonics 2009, 3, 031501. [Google Scholar] [CrossRef]
- Kopf, S.H.; Sessions, A.L.; Cowley, E.S.; Reyes, C.; Van Sambeek, L.; Hu, Y.; Orphan, V.J.; Kato, R.; Newman, D.K. Trace incorporation of heavy water reveals slow and heterogeneous pathogen growth rates in cystic fibrosis sputum. Proc. Natl. Acad. Sci. USA 2016, 113, E110–E116. [Google Scholar] [CrossRef]
- Annyas, J.; Bicanic, D.; Schouten, F. Novel instrumental approach to the measurement of total body water: Optothermal detection of heavy water in the blood serum. Appl. Spectrosc. 1999, 53, 339–343. [Google Scholar] [CrossRef]
- Jennings, G.; Bluck, L.; Wright, A.; Elia, M. The use of infrared spectrophotometry for measuring body water spaces. Clin. Chem. 1999, 45, 1077–1081. [Google Scholar] [CrossRef]
- International Atomic Energy Agency (IAEA). Introduction to Body Composition Assessment Using the Deuterium Dilution Technique with Analysis of Saliva Samples by Fourier Transform Infrared Spectrometry; IAEA Human Health Series No. 12, IAEA; International Atomic Energy Agency: Vienna, Austria, 2011. [Google Scholar]
- Singh, N.; Casas-Bedoya, A.; Hudson, D.D.; Read, A.; Mägi, E.; Eggleton, B.J. Mid-IR absorption sensing of heavy water using a silicon-on-sapphire waveguide. Opt. Lett. 2016, 41, 5776–5779. [Google Scholar] [CrossRef] [PubMed]
- Armani, A.M.; Vahala, K.J. Heavy water detection using ultra-high-Q microcavities. Opt. Lett. 2006, 31, 1896–1898. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Wang, J.; Du, P.; Chen, J.; Huo, S.; Guo, H.; Lu, X. Highly facile strategy for detecting D2O in H2O by porphyrin-based luminescent probes. Anal. Chem. 2022, 94, 8426–8432. [Google Scholar] [CrossRef]
- Adhikari, C.; Balasubramaniam, V.M.; Abbott, U.R. A rapid FTIR method for screening methyl sulfide and hexanal in modified atmosphere meal, ready-to-eat entrees. LWT-Food Sci. Technol. 2003, 36, 21–27. [Google Scholar] [CrossRef]
- Li, H.H. Refractive index of ZnS, ZnSe, and ZnTe and its wavelength and temperature derivatives. J. Phys. Chem. Ref. Data 1984, 13, 103–150. [Google Scholar] [CrossRef]
- Yu, L.; Ji, F.; Guo, T.; Yan, Z.; Huang, Z.; Deng, J.; Tang, C. Ultraviolet thermally tunable silicon magnetic plasmon induced transparency. Opt. Commun. 2025, 575, 131312. [Google Scholar] [CrossRef]
- Novotny, L. Strong coupling, energy splitting, and level crossings: A classical perspective. Am. J. Phys. 2010, 78, 1199–1202. [Google Scholar] [CrossRef]
- Houdré, R. Early stages of continuous wave experiments on cavity-polaritons. Phys. Status Solidi (B) 2005, 242, 2167–2196. [Google Scholar] [CrossRef]
- Hertzog, M.; Munkhbat, B.; Baranov, D.; Shegai, T.; Börjesson, K. Enhancing vibrational light–matter coupling strength beyond the molecular concentration limit using plasmonic arrays. Nano Lett. 2021, 21, 1320–1326. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakran, F.; Mahajna, S.; Shalabney, A. Leaky Coupled Waveguide-Plasmon Modes for Enhanced Light–Matter Interaction. Sensors 2025, 25, 1550. https://doi.org/10.3390/s25051550
Sakran F, Mahajna S, Shalabney A. Leaky Coupled Waveguide-Plasmon Modes for Enhanced Light–Matter Interaction. Sensors. 2025; 25(5):1550. https://doi.org/10.3390/s25051550
Chicago/Turabian StyleSakran, Fadi, Said Mahajna, and Atef Shalabney. 2025. "Leaky Coupled Waveguide-Plasmon Modes for Enhanced Light–Matter Interaction" Sensors 25, no. 5: 1550. https://doi.org/10.3390/s25051550
APA StyleSakran, F., Mahajna, S., & Shalabney, A. (2025). Leaky Coupled Waveguide-Plasmon Modes for Enhanced Light–Matter Interaction. Sensors, 25(5), 1550. https://doi.org/10.3390/s25051550