A Self-Adaptive Strip Pooling Network for Segmenting the Kidney Glomerular Basement Membrane
Abstract
:1. Introduction
2. Related Work
3. SSPNet Method
3.1. Self-Adaptive Strip Pooling Module
3.2. Loss Function and Deep Supervision
4. Experimental Design and Analysis
4.1. Experimental Details
- Primary chronic glomerular nephropathy (IgA Nephropathy): 74 patients (21.3%);
- Minimal change disease (MCD): 54 patients (15.6%);
- Membranous nephropathy (MN): 59 patients (17%);
- Thin basement membrane nephropathy: 26 patients (7.5%);
- Diabetic nephropathy: 33 patients (9.5%);
- Light mesangial proliferative glomerulonephritis: 53 patients (15.3%);
- Lupus nephritis: 48 patients (13.8%).
4.2. Comparison of Pooling Operations
4.3. Ablation Experiment
4.4. Performance Comparison
4.5. Experiments on Polyp Segmentation
4.6. Dataset Specificity and Generalizability
5. Conclusions
- (1)
- Automated Data Annotation: Investigation of methods for automated data annotation to improve the accuracy and efficiency of the training process. By developing algorithms that can automatically generate high-quality annotations, we aim to reduce the reliance on manual annotation and enhance the scalability of our approach.
- (2)
- Multi-class Segmentation and Expert Knowledge Integration: Extend the segmentation framework to support multi-class segmentation tasks, enabling the simultaneous identification of multiple structures within renal biopsy images. Additionally, we will explore ways to incorporate expert knowledge and clinical guidelines into the segmentation process. By integrating expert experience and domain-specific rules, we aim to improve the accuracy and reliability of the segmentation results, making them more aligned with clinical needs.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Levey, A.S.; Coresh, J.; Bolton, K.; Culleton, B.; Harvey, K.S.; Ikizler, T.A.; Johnson, C.A.; Kausz, A.; Kimmel, P.L.; Kusek, J.; et al. K/DOQI Clinical Practice Guide lines for Chronic Kidney Disease: Evaluation, Classification and Stratification National Kidney Foundation. Am. J. Kidney Dis. 2003, 139, 137–147. [Google Scholar]
- Bondugulapati, L.N.R.; Shandilya, S. Chronic kidney disease and cardiovascular disease. Curr. Opin. Lipidol. 2015, 26, 353–354. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.H.; Giam, S.T.; Jayasooriah; Sinniah, R. Adaptive window-based tracking for the detection of membrane structures in kidney electron micrographs. Mach. Vis. Appl. 1993, 6, 215–223. [Google Scholar] [CrossRef]
- Kamenetsky, I.; Rangayyan, R.M.; Benediktsson, H. Analysis of the glomerular basement membrane in images of renal biopsies using the split-and-merge method: A pilot study. J. Digit. Imaging 2010, 23, 463–474. [Google Scholar] [CrossRef] [PubMed]
- Rangayyan, R.M.; Kamenetsky, I.; Benediktsson, H. Segmentation and analysis of the glomerular basement membrane in renal biopsy samples using active contours: A pilot study. J. Digit. Imaging 2010, 23, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.S.; Dikman, S.; Gil, J. A semi-automatic algorithm for measurement of basement membrane thickness in kidneys in electron microscopy images. Comput. Methods Programs Biomed. 2010, 97, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.S.; Dikman, S. Segmentation and thickness measurement of glomerular basement membranes from electron microscopy images. J. Electron Microsc. 2010, 59, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Liu, J. Implementation of A Semi-Automatic Tool for Analysis of TEM Images of Kidney Samples. Master’s Thesis, Uppsala University, Uppsala, Sweden, 2012. [Google Scholar]
- Li, C.; Lu, Y.; Li, M.; Li, M.; Li, R.; Cao, L. Automatic segmentation of glomerular basement membrane based on image patch matching. J. Comput. Appl. 2016, 36, 3201. [Google Scholar]
- Mu, L.I.; Chuang-Quan, L.I.; Lei, C.; Ying-Ying, C.; Yuan-Yuan, L.; Yan-Meng, L.U. Basement membrane segmentation of glomerular tem images based on particle filter. Sci. Technol. Andengineering 2017, 17, 30–36. [Google Scholar]
- Guo, Y.; Ashour, A.S.; Sun, B. A novel glomerular basement membrane segmentation using neutrsophic set and shearlet transform on microscopic images. Health Inf. Sci. Syst. 2017, 5, 15. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Lu, Y.; Li, C.; Yang, W. Automatic segmentation of pathological glomerular basement membrane in transmission electron microscopy images with random forest stacks. Comput. Math. Methods Med. 2019, 2019, 1684218. [Google Scholar] [CrossRef] [PubMed]
- Taghanaki, S.A.; Abhishek, K.; Cohen, J.P.; Cohen-Adad, J.; Hamarneh, G. Deep semantic segmentation of natural and medical images: A review. Artif. Intell. Rev. 2020, 54, 137–178. [Google Scholar] [CrossRef]
- Alsaleh, A.M.; Albalawi, E.; Algosaibi, A.; Albakheet, S.S.; Khan, S.B. Few-Shot Learning for Medical Image Segmentation Using 3D U-Net and Model-Agnostic Meta-Learning (MAML). Diagnostics 2024, 14, 1213. [Google Scholar] [CrossRef] [PubMed]
- Hou, Q.; Zhang, L.; Cheng, M.-M.; Feng, J. Strip Pooling: Rethinking Spatial Pooling for Scene Parsing. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 4002–4011. [Google Scholar]
- Gao, S.-H.; Cheng, M.-M.; Zhao, K.; Zhang, X.-Y.; Yang, M.-H.; Torr, P.H. Res2Net: A new multi-scale backbone architecture. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 652–662. [Google Scholar] [CrossRef] [PubMed]
- Sandler, M.; Baccash, J.; Zhmoginov, A.; Howard, A. Non-discriminative data or weak model? On the relative importance of data and model resolution. arXiv 2019, arXiv:1909.03205. [Google Scholar]
- Huang, Z.; Wang, X.; Wei, Y.; Huang, L.; Shi, H.; Liu, W.; Huang, T.S. CCNet: Criss-cross attention for semantic segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar] [CrossRef]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar] [CrossRef]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Lazebnik, S.; Schmid, C.; Ponce, J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), New York, NY, USA, 17–22 June 2006; Volume 2, pp. 2169–2178. [Google Scholar]
- Huang, C.H.; Wu, H.Y.; Lin, Y.L. HarDNet-MSEG: A Simple Encoder-Decoder Polyp Segmentation Neural Network thatAchieves over 0.9 Mean Dice and 86 FPS. arXiv 2021, arXiv:2101.07172. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolutionfor Semantic Image Segmentation; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Wei, J.; Wang, S.; Huang, Q. F3Net: Fusion, Feedback and Focus for SalientObject Detection. In Proceedings of the AAAI Conference on Artificial Intelligence 2019, Honolulu, HI, USA, 27 January–1 February 2019; Volume 34, pp. 12321–12328. [Google Scholar]
- Fan, D.P.; Ji, G.P.; Zhou, T.; Chen, G.; Fu, H.; Shen, J.; Shao, L. PraNet: Parallel Reverse Attention Network forPolyp Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Lima, Peru, 4–8 October 2020; Springer International Publishing: Cham, Switzerland, 2020; pp. 263–273. [Google Scholar]
- Jha, D.; Smedsrud, P.H.; Riegler, M.A.; Johansen, D.; De Lange, T.; Halvorsen, P.; Johansen, H.D. Resunet++: An advanced architecture formedical image segmentation. In Proceedings of the 2019 IEEE International Symposium on Multimedia (ISM), San Diego, CA, USA, 9–11 December 2019; pp. 225–2255. [Google Scholar]
- Fan, D.-P.; Cheng, M.-M.; Liu, Y.; Li, T.; Borji, A. Structure-Measure: A New Way to Evaluate Foreground Maps. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4558–4567. [Google Scholar]
- Margolin, R.; Zelnik-Manor, L.; Tal, A. How to evaluate foreground maps? In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 248–255. [Google Scholar]
- Perazzi, F.; Krähenbühl, P.; Pritch, Y.; Hornung, A. Saliency filters: Contrast based filtering for salient region detection. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012; pp. 733–740. [Google Scholar]
- Saeed, K.; Tabedzki, M.; Rybnik, M.; Adamski, M. K3M: A universal algorithm forimage skeletonization and a review of thinning techniques. Int. J. Appl. Math. Comput. Sci. 2010, 20, 317–335. [Google Scholar] [CrossRef]
- Bernal, J.; Sánchez, F.J.; Fernández-Esparrach, G.; Gil, D.; Rodríguez, C.; Vilariño, F. Wm-dova maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Comput. Med. Imaging Graph. 2015, 43, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Shi, G.; Wang, R.; Lai, Y.; Zhang, J.; Sun, L.; Yang, Q.; Wu, Y.; Li, M.; Han, W.; et al. Feature-Prompting GBMSeg: One-Shot Reference Guided Training-Free Prompt Engineering for Glomerular Basement Membrane Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Marrakesh, Morocco, 6–10 October 2024; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
Model | Dice↑ | IoU↑ | Sm↑ | Fm↑ | MAE↓ |
---|---|---|---|---|---|
Original (Res2Net) | 0.746 | 0.603 | 0.806 | 0.710 | 0.042 |
Res2Net + SPM | 0.748 | 0.604 | 0.813 | 0.709 | 0.043 |
Res2Net + MPM | 0.747 | 0.603 | 0.810 | 0.699 | 0.044 |
Res2Net + SPM + MPM | 0.738 | 0.594 | 0.811 | 0.687 | 0.045 |
Res2Net + SSP | 0.756 | 0.615 | 0.818 | 0.709 | 0.042 |
Model | Dice↑ | IoU↑ | Sm↑ | Fm↑ | MAE↓ |
---|---|---|---|---|---|
Res2Net | 0.746 | 0.603 | 0.806 | 0.710 | 0.042 |
+Dilated | 0.773 | 0.637 | 0.812 | 0.742 | 0.038 |
+SSP | 0.756 | 0.615 | 0.818 | 0.709 | 0.042 |
+AT | 0.767 | 0.630 | 0.813 | 0.737 | 0.039 |
+LossA | 0.772 | 0.637 | 0.818 | 0.716 | 0.041 |
+Dilated + SSP | 0.776 | 0.642 | 0.821 | 0.730 | 0.039 |
+Dilated + SSP + AT | 0.785 | 0.653 | 0.828 | 0.741 | 0.037 |
SSPNet | 0.792 | 0.662 | 0.836 | 0.753 | 0.036 |
Model | Dice↑ | IoU↑ | Sm↑ | Fm↑ | MAE↓ |
---|---|---|---|---|---|
Deeplabv3 [20] | 0.760 | 0.625 | 0.819 | 0.730 | 0.040 |
Deeplabv3+ [24] | 0.754 | 0.621 | 0.814 | 0.711 | 0.041 |
HarDNet-MSEG [23] | 0.763 | 0.629 | 0.823 | 0.704 | 0.042 |
F3Net [25] | 0.781 | 0.652 | 0.831 | 0.731 | 0.038 |
PraNet [26] | 0.785 | 0.656 | 0.826 | 0.754 | 0.037 |
Our method | 0.792 | 0.662 | 0.836 | 0.753 | 0.036 |
Model | Mean Dice Coefficient | p-Value vs. SSPNet | 95% CI of the Difference |
---|---|---|---|
Deeplabv3 | 0.760 | <0.001 | [0.012, 0.036] |
Deeplabv3+ | 0.754 | <0.001 | [0.018, 0.042] |
HarDNet-MSEG | 0.763 | <0.001 | [0.015, 0.039] |
F3Net | 0.781 | 0.012 | [0.003, 0.021] |
PraNet | 0.785 | 0.008 | [0.002, 0.018] |
SSPNet | 0.792 | - | - |
Model | Dice↑ | IoU↑ | Sm↑ | Fm↑ | MAE↓ |
---|---|---|---|---|---|
U-Net [20] | 0.818 | 0.444 | 0.858 | 0.794 | 0.055 |
U-Net++ [24] | 0.821 | 0.743 | 0.862 | 0.808 | 0.048 |
ResU-Net [23] | 0.791 | Nan | Nan | Nan | Nan |
ResU-Net++ [25] | 0.813 | 0.793 | Nan | Nan | Nan |
PraNet [26] | 0.898 | 0.840 | 0.915 | 0.885 | 0.030 |
Ours (SASPNet) | 0.908 | 0.859 | 0.924 | 0.909 | 0.018 |
Model | Dice↑ | IoU↑ | Sm↑ | Fm↑ | MAE↓ |
---|---|---|---|---|---|
U-Net [20] | 0.823 | 0.755 | 0.954 | 0.889 | 0.019 |
U-Net++ [24] | 0.794 | 0.729 | 0.931 | 0.873 | 0.022 |
ResU-Net [23] | 0.779 | Nan | Nan | Nan | Nan |
ResU-Net++ [25] | 0.796 | 0.796 | Nan | Nan | Nan |
PraNet [26] | 0.899 | 0.849 | 0.979 | 0.896 | 0.009 |
Ours (SASPNet) | 0.915 | 0.866 | 0.933 | 0.914 | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, C.; Huang, X.; Lyu, X. A Self-Adaptive Strip Pooling Network for Segmenting the Kidney Glomerular Basement Membrane. Sensors 2025, 25, 1829. https://doi.org/10.3390/s25061829
Song C, Huang X, Lyu X. A Self-Adaptive Strip Pooling Network for Segmenting the Kidney Glomerular Basement Membrane. Sensors. 2025; 25(6):1829. https://doi.org/10.3390/s25061829
Chicago/Turabian StyleSong, Caifang, Xiangsheng Huang, and Xiangyu Lyu. 2025. "A Self-Adaptive Strip Pooling Network for Segmenting the Kidney Glomerular Basement Membrane" Sensors 25, no. 6: 1829. https://doi.org/10.3390/s25061829
APA StyleSong, C., Huang, X., & Lyu, X. (2025). A Self-Adaptive Strip Pooling Network for Segmenting the Kidney Glomerular Basement Membrane. Sensors, 25(6), 1829. https://doi.org/10.3390/s25061829