Microfluidic biosensors integrate microfluidic and biosensing technologies to achieve the miniaturization, integration, and automation of disease diagnosis, and show great potential for application in the fields of cancer liquid biopsy, pathogenic bacteria detection, and POCT. This paper reviews the recent advances related to
[...] Read more.
Microfluidic biosensors integrate microfluidic and biosensing technologies to achieve the miniaturization, integration, and automation of disease diagnosis, and show great potential for application in the fields of cancer liquid biopsy, pathogenic bacteria detection, and POCT. This paper reviews the recent advances related to microfluidic biosensors in the field of laboratory medicine, focusing on their applications in the above three areas. In cancer liquid biopsy, microfluidic biosensors facilitate the isolation, enrichment, and detection of tumor markers such as CTCs, ctDNA, miRNA, exosomes, and so on, providing support for early diagnosis, precise treatment, and prognostic assessment. In terms of pathogenic bacteria detection, microfluidic biosensors can achieve the rapid, highly sensitive, and highly specific detection of a variety of pathogenic bacteria, helping disease prevention and control as well as public health safety. Pertaining to the realm of POCT, microfluidic biosensors bring the convenient detection of a variety of diseases, such as tumors, infectious diseases, and chronic diseases, to primary health care. Future microfluidic biosensor research will focus on enhancing detection throughput, lowering costs, innovating new recognition elements and signal transduction methods, integrating artificial intelligence, and broadening applications to include home health care, drug discovery, food safety, and so on.
Full article