A Multi-Satellite Multi-Target Observation Task Planning and Replanning Method Based on DQN
Abstract
:1. Introduction
2. Multi-Satellite Multi-Target Observation Task Description
2.1. Scene Description
2.2. Description of Parameters and Variables
- (1)
- Model parameters:
- (2)
- Model variables:
2.3. Optimization Goals
- (1)
- Task planning time:
- (2)
- Task execution time:
- (3)
- Task completion rate:
- (4)
- Total task reward:
2.4. Constraints
- (1)
- Visibility constraint:
- (2)
- Time window constraint:
- (3)
- On-planet resource constraints:
- (4)
- Task conflicts:
3. DQNP Model for Multi-Target Observation Task Planning and Replanning
3.1. DQN-Based Sequence Planning for Observation Targets
3.1.1. Framework Construction of the DQN Model
3.1.2. Q-Network-Based Action Selection
3.1.3. Parameter Update Based on Target Q-Network
3.2. Optimal Task Planning Using Matrix Ordering
3.3. Task Replanning for Contingencies
- (1)
- Satellite failure conditions:
- (2)
- Urgent task planning:
4. Experimental Results and Discussion
4.1. Scene Construction
4.2. Model Training
4.3. Task Planning Results
4.4. Results of Task Replanning
- (1)
- Satellite failure scenarios
- (2)
- Emergency task
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kennewell, J.A.; Vo, B.N. An overview of space situational awareness. In Proceedings of the 16th International Conference on Information Fusion, Istanbul, Turkey, 9–12 July 2013; pp. 1029–1036. [Google Scholar]
- Chen, Y.; Xu, M.; Shen, X.; Zhang, G.; Lu, Z.; Xu, J. A multi-objective modeling method of multi-satellite imaging task planning for large regional Mapping. Remote Sens. 2020, 12, 344. [Google Scholar] [CrossRef]
- Fei, H.; Zhang, X.; Long, J.; Liu, L.; Wang, Y. Towards Multi-Satellite Collaborative Computing via Task Scheduling Based on Genetic Algorithm. Aerospace 2023, 10, 95. [Google Scholar] [CrossRef]
- Gan, L.; Gong, S. Observation mission planning for maneuverable satellite constellations towards multiple targets. J. Tsinghua Univ. (Sci. Technol.) 2021, 61, 240–247. [Google Scholar]
- Xu, Z.; Liu, Y.; Feng, Z. Mission Planning for Astronomical Satellite Based on Genetic Algorithm under Tiling Coverage Strategy. Chin. J. Space Sci. 2022, 42, 321–328. [Google Scholar] [CrossRef]
- Ding, Y.N.; Lei, Y.J.; Wang, S.Y.; Huang, P.X. Agileimagingsatellitetaskplanningmethodforrevisittimerequirements. Aerosp. Control Appl. 2024, 50, 23–29. (In Chinese) [Google Scholar] [CrossRef]
- Lu, Z.; Shen, X.; Li, D.; Li, D.; Chen, Y.; Wang, D.; Shen, S. Multiple super-agile satellite collaborative mission planning for area target imaging. Int. J. Appl. Earth Obs. Geoinformation 2023, 117, 103211. [Google Scholar] [CrossRef]
- Chen, Y.; Tian, G.; Guo, J.; Huang, J. Task Planning for Multiple-Satellite Space-Situational-Awareness Systems. Aerospace 2021, 8, 73. [Google Scholar] [CrossRef]
- Liu, L.H.; Dong, Z.H.; Su, H.X.; Chen, G.Z. Multi-satellite distributed mission scheduling via game strategy. Control Theory Appl. 2023, 40, 502–508. [Google Scholar]
- Chen, H.; Li, L.; Zhong, Z.; Li, J. Approach for earth observation satellite real-time and playback data transmission scheduling. J. Syst. Eng. Electron. 2015, 26, 982–992. [Google Scholar] [CrossRef]
- Stollenwerk, T.; Michaud, V.; Lobe, E.; Picard, M.; Basermann, A.; Botter, T. Agile Earth Observation Satellite Scheduling With a Quantum Annealer. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 3520–3528. [Google Scholar] [CrossRef]
- Long, J.; Wu, S.; Han, X.; Wang, Y.; Liu, L. Autonomous Task Planning Method for Multi-Satellite System Based on a Hybrid Genetic Algorithm. Aerospace 2023, 10, 70. [Google Scholar] [CrossRef]
- Zhou, Q.R.; Wan, G.H. Modeling and optimization algorithm of multi-task assignment for multi-satellite. Aerosp. Control Appl. 2022, 48, 39–46. (In Chinese) [Google Scholar]
- Zhang, G.; Li, X.; Hu, G.; Li, Y.; Wang, X.; Zhang, Z. MARL-Based Multi-Satellite Intelligent Task Planning Method. IEEE Access 2023, 11, 135517–135528. [Google Scholar] [CrossRef]
- Ou, J.; Xing, L.; Yao, F.; Li, M.; Lv, J.; He, Y.; Song, Y.; Wu, J.; Zhang, G. Deep reinforcement learning method for satellite range scheduling problem. Swarm Evol. Comput. 2023, 77, 101233. [Google Scholar] [CrossRef]
- Wei, L.; Chen, Y.; Chen, M.; Chen, Y. Deep reinforcement learning and parameter transfer based approach for the multi-objective agile earth observation satellite scheduling problem. Appl. Soft Comput. 2021, 110, 107607. [Google Scholar] [CrossRef]
- Liu, X.; Chen, A.; Zheng, K.; Chi, K.; Yang, B.; Taleb, T. Distributed Computation Offloading for Energy Provision Minimization in WP-MEC Networks with Multiple HAPs. IEEE Trans. Mob. Comput. 2024, 24, 2673–2689. [Google Scholar] [CrossRef]
- Feng, X.; Li, Y.; Xu, M. Multi-satellite cooperative scheduling method for large-scale tasks based on hybrid graph neural network and metaheuristic algorithm. Adv. Eng. Inform. 2024, 60, 102362. [Google Scholar] [CrossRef]
- Jia, M.; Zhang, L.; Wu, J.; Guo, Q.; Zhang, G.; Gu, X. Deep Multi-Agent Reinforcement Learning for Task Offloading and Resource Allocation in Satellite Edge Computing. IEEE Internet Things J. 2024, 12, 3832–3845. [Google Scholar] [CrossRef]
- Song, Y.-J.; Zhou, Z.-Y.; Zhang, Z.-S.; Yao, F.; Chen, Y.-W. A framework involving MEC: Imaging satellites mission planning. Neural Comput. Appl. 2020, 32, 15329–15340. [Google Scholar] [CrossRef]
- Li, H.; Yu, J.; Cao, L.; Zhang, Q.; Song, Z.; Hou, S. Multi-agent reinforcement learning based computation offloading and resource allocation for LEO Satellite edge computing networks. Comput. Commun. 2024, 222, 268–276. [Google Scholar] [CrossRef]
- Kocaman, S.A. Sensor Modeling and Validation for Linear Array Aerial and Satellite Imagery. Ph.D. Thesis, ETH Zurich, Zürich, Switzerland, 2008. [Google Scholar]
Convert the observed target sequence into a target sequence matrix H Initialize the task sequence matrix E = {} Initialize the alternate target sequence matrix B = {} While H ≠ 0 do For i = 1, 2, … q While Ei has zero elements do If H1 has no task conflicts with stored targets in Ei Store H1 to the vacant position of Ei Else Store H1 to B Delete H1 from H End while Complete the task with the shortest time Ei+1 = Ei, delete completed task element and update task time Add B to H in top order End for End while |
Orbit | Semimajor Axis (km) | Eccentricity | Inclination (deg) | Argument of Perigee (deg) | RAAN (deg) |
---|---|---|---|---|---|
1 | 8878.14 | 0.00081 | 60.0144 | 270.11 | 0.24357 |
2 | 8878.14 | 0.00082 | 60.1367 | 269.698 | 89.9366 |
Model | Task Planning Time (s) | Task Execution Time (s) | Task Completion Rate | Total Task Rewards |
---|---|---|---|---|
DQNP | 0.57 | 890 | 100% | 65.26 |
Speed priority | 0.36 | 740 | 100% | 41.68 |
Effect priority | 0.42 | 1460 | 89% | 52.96 |
Situation | Task Planning Time (s) | Task Execution Time (s) | Task Completion Rate | Total Task Rewards |
---|---|---|---|---|
Normal | 0.57 | 890 | 100% | 65.26 |
Satellite failure | 0.58 | 930 | 100% | 57.56 |
Urgent task | 0.61 | 950 | 100% | 64.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, X.; Wang, S.; Liu, W.; Liu, C. A Multi-Satellite Multi-Target Observation Task Planning and Replanning Method Based on DQN. Sensors 2025, 25, 1856. https://doi.org/10.3390/s25061856
Xing X, Wang S, Liu W, Liu C. A Multi-Satellite Multi-Target Observation Task Planning and Replanning Method Based on DQN. Sensors. 2025; 25(6):1856. https://doi.org/10.3390/s25061856
Chicago/Turabian StyleXing, Xiaoyu, Shuyi Wang, Wenjing Liu, and Chengrui Liu. 2025. "A Multi-Satellite Multi-Target Observation Task Planning and Replanning Method Based on DQN" Sensors 25, no. 6: 1856. https://doi.org/10.3390/s25061856
APA StyleXing, X., Wang, S., Liu, W., & Liu, C. (2025). A Multi-Satellite Multi-Target Observation Task Planning and Replanning Method Based on DQN. Sensors, 25(6), 1856. https://doi.org/10.3390/s25061856