Non-Invasive Wide-Field Imaging of Chip Surface Temperature Distribution Based on Ensemble Diamond Nitrogen-Vacancy Centers
Abstract
:1. Introduction
2. Experimental Principles
2.1. Principle of Diamond NV Centers Temperature Measurement
2.2. Experimental Setup
3. Results
3.1. Effect of Bias Magnetic Field Alignment on Temperature Sensitivity
3.2. Wide-Field Temperature Imaging of Chip Surfaces
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, Z.; Jia, H.; Wang, D.; Yu, H. MEMS Resonant Beam with Outstanding Uniformity of Sensitivity and Temperature Distribution for Accurate Gas Sensing and On-Chip TGA. Sensors 2024, 24, 2495. [Google Scholar] [CrossRef]
- Chen, W.-Y.; Shi, X.-L.; Zou, J.; Chen, Z.-G. Thermoelectric Coolers for On-Chip Thermal Management: Materials, Design, and Optimization. Mater. Sci. Eng. R Rep. 2022, 151, 100700. [Google Scholar] [CrossRef]
- Shi, N.; Yang, J.; Cao, Z.; Jin, X. A Programmable Ambient Light Sensor with Dark Current Compensation and Wide Dynamic Range. Sensors 2024, 24, 3396. [Google Scholar] [CrossRef] [PubMed]
- Kucsko, G.; Maurer, P.C.; Yao, N.Y.; Kubo, M.; Noh, H.J.; Lo, P.K.; Park, H.; Lukin, M.D. Nanometre-Scale Thermometry in a Living Cell. Nature 2013, 500, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhao, L.; Chang, Y.; Zhao, L.; Guo, G.; Wang, X. Ultra-Thin Temperature Controllable Microwell Array Chip for Continuous Real-Time High-Resolution Imaging of Living Single Cells. Chin. Chem. Lett. 2021, 32, 3446–3449. [Google Scholar] [CrossRef]
- Brites, C.D.S.; Balabhadra, S.; Carlos, L.D. Lanthanide-Based Thermometers: At the Cutting-Edge of Luminescence Thermometry. Adv. Opt. Mater. 2019, 7, 1801239. [Google Scholar] [CrossRef]
- Wang, C.; Xu, R.; Tian, W.; Jiang, X.; Cui, Z.; Wang, M.; Sun, H.; Fang, K.; Gu, N. Determining Intracellular Temperature at Single-Cell Level by a Novel Thermocouple Method. Cell Res. 2011, 21, 1517–1519. [Google Scholar] [CrossRef]
- Bai, T.; Gu, N. Micro/Nanoscale Thermometry for Cellular Thermal Sensing. Small 2016, 12, 4590–4610. [Google Scholar] [CrossRef]
- Okabe, K.; Inada, N.; Gota, C.; Harada, Y.; Funatsu, T.; Uchiyama, S. Intracellular Temperature Mapping with a Fluorescent Polymeric Thermometer and Fluorescence Lifetime Imaging Microscopy. Nat. Commun. 2012, 3, 705. [Google Scholar] [CrossRef]
- Acosta, V.M.; Bauch, E.; Ledbetter, M.P.; Waxman, A.; Bouchard, L.-S.; Budker, D. Temperature Dependence of the Nitrogen-Vacancy Magnetic Resonance in Diamond. Phys. Rev. Lett. 2010, 104, 070801. [Google Scholar] [CrossRef]
- Liu, G.-Q.; Feng, X.; Wang, N.; Li, Q.; Liu, R.-B. Coherent Quantum Control of Nitrogen-Vacancy Center Spins near 1000 Kelvin. Nat. Commun. 2019, 10, 1344. [Google Scholar] [CrossRef] [PubMed]
- Laraoui, A.; Aycock-Rizzo, H.; Gao, Y.; Lu, X.; Riedo, E.; Meriles, C.A. Imaging Thermal Conductivity with Nanoscale Resolution Using a Scanning Spin Probe. Nat. Commun. 2015, 6, 8954. [Google Scholar] [CrossRef]
- Zhang, N.; Guo, Q.; Ye, W.; Feng, R.; Yuan, H. Temperature Fluctuations Compensation with Multi-Frequency Synchronous Manipulation for a NV Magnetometer in Fiber-Optic Scheme. Sensors 2022, 22, 5218. [Google Scholar] [CrossRef]
- Yang, M.; Yuan, Q.; Gao, J.; Shu, S.; Chen, F.; Sun, H.; Nishimura, K.; Wang, S.; Yi, J.; Lin, C.-T.; et al. A Diamond Temperature Sensor Based on the Energy Level Shift of Nitrogen-Vacancy Color Centers. Nanomaterials 2019, 9, 1576. [Google Scholar] [CrossRef] [PubMed]
- Gruber, A.; Dräbenstedt, A.; Tietz, C.; Fleury, L.; Wrachtrup, J.; Borczyskowski, C.V. Scanning Confocal Optical Microscopy and Magnetic Resonance on Single Defect Centers. Science 1997, 276, 2012–2014. [Google Scholar] [CrossRef]
- Chen, X.-D.; Dong, C.-H.; Sun, F.-W.; Zou, C.-L.; Cui, J.-M.; Han, Z.-F.; Guo, G.-C. Temperature Dependent Energy Level Shifts of Nitrogen-Vacancy Centers in Diamond. Appl. Phys. Lett. 2011, 99, 161903. [Google Scholar] [CrossRef]
- Wojciechowski, A.M.; Karadas, M.; Osterkamp, C.; Jankuhn, S.; Meijer, J.; Jelezko, F.; Huck, A.; Andersen, U.L. Precision Temperature Sensing in the Presence of Magnetic Field Noise and Vice-Versa Using Nitrogen-Vacancy Centers in Diamond. Appl. Phys. Lett. 2018, 113, 013502. [Google Scholar] [CrossRef]
- Masuyama, Y.; Suzuki, K.; Hekizono, A.; Iwanami, M.; Hatano, M.; Iwasaki, T.; Ohshima, T. Gradiometer Using Separated Diamond Quantum Magnetometers. Sensors 2021, 21, 977. [Google Scholar] [CrossRef]
- Foy, C.; Zhang, L.; Trusheim, M.E.; Bagnall, K.R.; Walsh, M.; Wang, E.N.; Englund, D.R. Wide-Field Magnetic Field and Temperature Imaging Using Nanoscale Quantum Sensors. ACS Appl. Mater. Interfaces 2020, 12, 26525–26533. [Google Scholar] [CrossRef]
- Zhang, C.; Yuan, H.; Zhang, N.; Xu, L.X.; Li, B.; Cheng, G.D.; Wang, Y.; Gui, Q.; Fang, J.C. Dependence of High Density Nitrogen-Vacancy Center Ensemble Coherence on Electron Irradiation Doses and Annealing Time. J. Phys. D Appl. Phys. 2017, 50, 505104. [Google Scholar] [CrossRef]
- Gali, Á. Ab Initio Theory of the Nitrogen-Vacancy Center in Diamond. Nanophotonics 2019, 8, 1907–1943. [Google Scholar] [CrossRef]
- Ruf, M.; Wan, N.H.; Choi, H.; Englund, D.; Hanson, R. Quantum Networks Based on Color Centers in Diamond. J. Appl. Phys. 2021, 130, 070901. [Google Scholar] [CrossRef]
- Shi, Z.; Li, Z.; Liang, Y.; Zhang, H.; Wen, H.; Guo, H.; Ma, Z.; Tang, J.; Liu, J. Multichannel Control for Optimizing the Speed of Imaging in Quantum Diamond Microscope. IEEE Sens. J. 2023, 23, 24366–24372. [Google Scholar] [CrossRef]
- Shi, Z.; Jin, H.; Zhang, H.; Li, Z.; Wen, H.; Guo, H.; Ma, Z.; Tang, J.; Liu, J. Measurements of Spatial Angles Using Diamond Nitrogen–Vacancy Center Optical Detection Magnetic Resonance. Sensors 2024, 24, 2613. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Raj, R.; Jana, J.; Chatterjee, S.; Ganapathi, K.L.; Chandran, M.; Ramachandra Rao, M.S. Diamond—The Ultimate Material for Exploring Physics of Spin-Defects for Quantum Technologies and Diamondtronics. J. Phys. D Appl. Phys. 2022, 55, 333002. [Google Scholar] [CrossRef]
- Savitski, V.G. Optical Gain in NV-Colour Centres for Highly-Sensitive Magnetometry: A Theoretical Study. J. Phys. D Appl. Phys. 2017, 50, 475602. [Google Scholar] [CrossRef]
- Tzeng, Y.-K.; Tsai, P.-C.; Liu, H.-Y.; Chen, O.Y.; Hsu, H.; Yee, F.-G.; Chang, M.-S.; Chang, H.-C. Time-Resolved Luminescence Nanothermometry with Nitrogen-Vacancy Centers in Nanodiamonds. Nano Lett. 2015, 15, 3945–3952. [Google Scholar] [CrossRef]
- Schirhagl, R.; Chang, K.; Loretz, M.; Degen, C.L. Nitrogen-Vacancy Centers in Diamond: Nanoscale Sensors for Physics and Biology. Annu. Rev. Phys. Chem. 2014, 65, 83–105. [Google Scholar] [CrossRef]
- Barry, J.F.; Schloss, J.M.; Bauch, E.; Turner, M.J.; Hart, C.A.; Pham, L.M.; Walsworth, R.L. Sensitivity Optimization for NV-Diamond Magnetometry. Rev. Mod. Phys. 2020, 92, 015004. [Google Scholar] [CrossRef]
B∥<111> | B∥<110> | B∥<100> | B∥NO | |
---|---|---|---|---|
Δω (MHz) | 10 | 11 | 13 | 12 |
C (%) | 12 | 12 | 10 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Z.; Pan, Z.; Li, Q.; Li, W. Non-Invasive Wide-Field Imaging of Chip Surface Temperature Distribution Based on Ensemble Diamond Nitrogen-Vacancy Centers. Sensors 2025, 25, 1947. https://doi.org/10.3390/s25061947
Shi Z, Pan Z, Li Q, Li W. Non-Invasive Wide-Field Imaging of Chip Surface Temperature Distribution Based on Ensemble Diamond Nitrogen-Vacancy Centers. Sensors. 2025; 25(6):1947. https://doi.org/10.3390/s25061947
Chicago/Turabian StyleShi, Zhenrong, Ziwen Pan, Qinghua Li, and Wei Li. 2025. "Non-Invasive Wide-Field Imaging of Chip Surface Temperature Distribution Based on Ensemble Diamond Nitrogen-Vacancy Centers" Sensors 25, no. 6: 1947. https://doi.org/10.3390/s25061947
APA StyleShi, Z., Pan, Z., Li, Q., & Li, W. (2025). Non-Invasive Wide-Field Imaging of Chip Surface Temperature Distribution Based on Ensemble Diamond Nitrogen-Vacancy Centers. Sensors, 25(6), 1947. https://doi.org/10.3390/s25061947