Low Back Exoskeletons in Industry 5.0: From Machines to Perceiving Co-Pilots—A State-of-the-Art Review
Abstract
:1. Introduction
1.1. The Role of Technology
1.2. Search Strategy
1.3. Paper Contribution and Structure
2. Simulation Environments for the Early Stages of Exoskeleton Development
Simulation Model | Load Estimation | Joint | Planes or Dimensions | Model Inputs |
---|---|---|---|---|
3DSSPP™ [16] | compression, shear | L4-L5 and L5-S1 | 3D | body weight and height, payload position and weight, body posture |
HCBCF [17] | compression | L4-L5 | axial compression only | body weight and height, L5-S1 joint-hand distance, payload weight, and trunk sagittal flexion angle |
LSBM [18] | compression | L5-S1 | axial compression only | L5-S1 joint coordinates, subject weight, and handled weight magnitude or position |
Regression models [19,20] | compression, shear | L5-S1 | 3D | sagittal trunk flexion, lumbopelvic ratio, payload and its anterior or lateral distance from L5-S1 |
SPE [21] | compression | L4-L5 | axial compression only | flexion-extension, lateral bending, and axial twisting moment |
AnyBody [22] | compression, shear, momentum | full body | 3D | human body kinematics and dynamics and payload |
OpenSim [23] | compression, shear, momentum | full body | 3D | human body kinematics and dynamics and payload |
Santos [25] | compression, shear, momentum | full body | 3D | human body kinematics and dynamics and payload |
3. Human-Centered Robotic Design
3.1. Design and Actuation of Existing Passive Exoskeletons
3.2. Design and Actuation of Existing Active Exoskeletons
4. System Design
4.1. Control Strategies of Active BE
4.2. Perception
4.3. Intelligent Layer
5. Results and Discussion
5.1. Results
5.2. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- De Looze, M.P.; Bosch, T.; Krause, F.; Stadler, K.S.; O’Sullivan, L.W. Exoskeletons for industrial application and their potential effects on physical work load. Ergonomics 2016, 59, 671–681. [Google Scholar] [CrossRef] [PubMed]
- Bernard, B.P.; Putz-Anderson, V. Musculoskeletal Disorders and Workplace Factors: A Critical Review of Epidemiologic Evidence for Work-Related Musculoskeletal Disorders of the Neck, Upper Extremity, and Low Back; In DHHS Publication; (NIOSH): Washington, DC, USA, 1997; pp. 97–141. [Google Scholar]
- Dolan, P.; Adams, M.A. Repetitive lifting tasks fatigue the back muscles and increase the bending moment acting on the lumbar spine. J. Biomech. 1998, 31, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Van der Have, A.; Van Rossom, S.; Jonkers, I. Squat lifting imposes higher peak joint and muscle loading compared to stoop lifting. Appl. Sci. 2019, 9, 3794. [Google Scholar] [CrossRef]
- Kingma, I.; Faber, G.S.; van Dieën, J.H. How to lift a box that is too large to fit between the knees. Ergonomics 2010, 53, 1228–1238. [Google Scholar] [CrossRef]
- Berger-Roscher, N.; Casaroli, G.; Rasche, V.; Villa, T.; Galbusera, F.; Wilke, H.-J. Influence of complex loading conditions on intervertebral disc failure. Spine 2017, 42, E78–E85. [Google Scholar] [CrossRef]
- Parent-Thirion, A.; Biletta, I.; Cabrita, J. Sixth European Working Conditions Survey—Overview Report; 2017 Update; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar] [CrossRef]
- Gonsalves, N.; Akanmu, A.; Shojaei, A.; Agee, P. Factors influencing the adoption of passive exoskeletons in the construction industry: Industry perspectives. Int. J. Ind. Ergon. 2024, 100, 103549. [Google Scholar] [CrossRef]
- Crea, S.; Beckerle, P.; De Looze, M.; De Pauw, K.; Grazi, L.; Kermavnar, T.; Masood, J.; O’sullivan, L.W.; Pacifico, I.; Rodriguez-Guerrero, C.; et al. Occupational exoskeletons: A roadmap toward large-scale adoption. Methodology and challenges of bringing exoskeletons to workplaces. Wearable Technol. 2021, 2, e11. [Google Scholar] [CrossRef]
- Toxiri, S.; Näf, M.B.; Lazzaroni, M.; Fernández, J.; Sposito, M.; Poliero, T.; Monica, L.; Anastasi, S.; Caldwell, D.G.; Ortiz, J. Back-support exoskeletons for occupational use: An overview of technological advances and trends. IISE Trans. Occup. Ergon. Hum. Factors 2019, 7, 237–249. [Google Scholar] [CrossRef]
- Pérez Vidal, A.F.; Morales, J.Y.R.; Torres, G.O.; Vázquez, F.d.J.S.; Rojas, A.C.; Mendoza, J.A.B.; Cerda, J.C.R. Soft exoskeletons: Development, requirements, and challenges of the last decade. Actuators 2021, 10, 166. [Google Scholar] [CrossRef]
- Xiloyannis, M.; Alicea, R.; Georgarakis, A.-M.; Haufe, F.L.; Wolf, P.; Masia, L.; Riener, R. Soft robotic suits: State of the art, core technologies, and open challenges. IEEE Trans. Robot. 2021, 38, 1343–1362. [Google Scholar] [CrossRef]
- Ali, A.; Fontanari, V.; Schmoelz, W.; Agrawal, S.K. Systematic review of back-support exoskeletons and soft robotic suits. Front. Bioeng. Biotechnol. 2021, 9, 765257. [Google Scholar] [CrossRef]
- Breque, M.; De Nul, L.; Petridis, A. European Commission, Directorate-General for Research and Innovation, Industry 5.0—Towards a Sustainable, Human-Centric, and Resilient European Industry; Publications Office of the European Union: Luxembourg, 2021; Available online: https://data.europa.eu/doi/10.2777/308407 (accessed on 18 March 2025).
- Becattini, N.; Patriarca, L.; Scaccabarozzi DParenti, P.; Dal Prete, A.; Gandolla, M. An integrated survey-simulation approach for exoskeleton performance estimation. Proc. Des. Soc. 2024, 4, 2327–2336. [Google Scholar] [CrossRef]
- 3DSSPP™. Available online: https://c4e.engin.umich.edu/tools-services/3dsspp-software/ (accessed on 8 May 2024).
- Merryweather, A.S.; Loertscher, M.C.; Bloswick, D.S. A Revised Back Compressive Force Estimation Model for Ergonomic Evaluation of Lifting Tasks. Work 2009, 34, 263–272. [Google Scholar] [PubMed]
- Potvin, J.R. Use of NIOSH equation inputs to calculate lumbosacral compression forces. Ergonomics 1997, 40, 691–707. [Google Scholar] [CrossRef]
- Arjmand, N.; Plamondon, A.; Shirazi-Adl, A.; Larivière, C.; Parnianpour, M. Predictive equations to estimate spinal loads in symmetric lifting tasks. J. Biomech. 2011, 44, 84–91. [Google Scholar] [CrossRef]
- Arjmand, N.; Plamondon, A.; Shirazi-Adl, A.; Parnianpour, M.; Larivière, C. Predictive equations for lumbar spine loads in load-dependent asymmetric one- and two-handed lifting activities. Clin. Biomech. 2012, 27, 537–544. [Google Scholar] [CrossRef]
- McGill, S.M.; Norman, R.W.; Cholewicki, J. A simple polynomial that predicts low-back compression during complex 3-D tasks. Ergonomics 1996, 39, 9, 1107–1118. [Google Scholar] [CrossRef]
- Damsgaard, M.; Rasmussen, J.; Christensen, S.T.; Surma, E.; De Zee, M. Analysis of musculoskeletal systems in the AnyBody modeling system. Simul. Model. Pract. Theory 2006, 14, 1100–1111. [Google Scholar] [CrossRef]
- Delp, S.L.; Anderson, F.C.; Arnold, A.S.; Loan, P.; Habib, A.; John, C.T.; Guendelman, E.; Thelen, D.G. OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 2007, 54, 1940–1950. [Google Scholar]
- Bruno, A.G.; Bouxsein, M.L.; Anderson, D.E. Development and validation of a musculoskeletal model of the fully articulated thoracolumbar spine and rib cage. J. Biobech. Eng. 2015, 137, 081003. [Google Scholar]
- Abdel-Malek, K.; Arora, J.; Bhatt, R.; Farrell, K.; Murphy, C.; Kregel, K. Chapter 6—Santos: An Integrated Human Modeling and Simulation Platform; Academic Press: Cambridge, MA, USA, 2019; pp. 63–77. [Google Scholar] [CrossRef]
- Molinaro, D.D.; Scherpereel, K.L.; Schonhaut, E.B.; Evangelopoulos, G.; Shepherd, M.K.; Young, A.J. Task-agnostic exoskeleton control via biological joint moment estimation. Nature 2024, 635, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Jiang, M.; Zhang, S.; Zhu, J.; Yu, S.; Silva, I.D.; Wang, T.; Rouse, E.; Zhou, B.; Yuk, H.; et al. Experiment-free exoskeleton assistance via learning in simulation. Nature 2024, 630, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Pesenti, M.; Invernizzi, G.; Mazzella, J.; Bocciolone, M.; Pedrocchi, A.; Gandolla, M. IMU-based human activity recognition and payload classification for low-back exoskeletons. Sci. Rep. 2023, 13, 1184. [Google Scholar] [CrossRef]
- Bianco, N.A.; Collins, S.H.; Liu, K.; Delp, S.L. Simulating the effect of ankle plantarflexion and inversion-eversion exoskeleton torques on center of mass kinematics during walking. PLoS Comput. Biol. 2023, 19, e1010712. [Google Scholar] [CrossRef]
- Beaucage-Gauvreau, E.; Robertson, W.S.P.; Brandon, S.C.E.; Fraser, R.; Freeman, B.J.C.; Graham, R.B.; Thewlis, D.; Jones, C.F. Validation of an OpenSim full-body model with detailed lumbar spine for estimating lower lumbar spine loads during symmetric and asymmetric lifting tasks. Comput. Methods Biomech. Biomed. Eng. 2019, 22, 451–464. [Google Scholar] [CrossRef]
- Rajaee, M.A.; Arjmand, N.; Shirazi-Adl, A.; Plamondon, A.; Schmidt, H. Comparative evaluation of six quantitative lifting tools to estimate spine loads during static activities. Appl. Ergon. 2015, 22–32. [Google Scholar] [CrossRef]
- Kermavnar, T.; de Vries, A.W.; de Looze, M.P.; O’sullivan, L.W. Effects of industrial back-support exoskeletons on body loading and user experience: An updated systematic review. Ergonomics 2021, 64, 685–711. [Google Scholar] [CrossRef]
- Ding, S.; Reyes, F.A.; Bhattacharya, S.; Narayan, A.; Han, S.; Seyram, O.; Yu, H. A Novel Back-Support Exoskeleton With a Differential Series Elastic Actuator for Lifting Assistance. IEEE Trans. Robot. 2024, 40, 1327–1338. [Google Scholar] [CrossRef]
- Chung, J.; Quirk, D.A.; Applegate, M.; Rouleau, M.; Degenhardt, N.; Galiana, I.; Dalton, D.; Awad, L.N.; Walsh, C.J. Lightweight active back exosuit reduces muscular effort during an hour-long order picking task. Commun. Eng. 2024, 3, 35. [Google Scholar] [CrossRef]
- Madinei, S.; Nussbaum, M.A. Estimating lumbar spine loading when using back-support exoskeletons in lifting tasks. J. Biomech. 2023, 147, 111439. [Google Scholar] [CrossRef]
- De Miguel-Fernández, J.; Salazar-Del Rio, M.; Rey-Prieto, M.; Bayón, C.; Guirao-Cano, L.; Font-Llagunes, J.M.; Lobo-Prat, J. Inertial sensors for gait monitoring and design of adaptive controllers for exoskeletons after stroke: A feasibility study. Front. Bioeng. Biotechnol. 2023, 11, 1208561. [Google Scholar] [CrossRef]
- Suitx. 2020. Available online: https://www.suitx.com/ (accessed on 6 December 2023).
- Comau Mate. 2023. Available online: https://mate.comau.com (accessed on 6 December 2023).
- Aldak. 2023. Available online: https://exoskeletonreport.com/product/aldak-passive/ (accessed on 11 March 2024).
- Li, P.L.; Achiche, S.; Blanchet, L.; Lecours, S.; Raison, M. Design of an Assistive Trunk Exoskeleton Based on Multibody Dynamic Modelling. arXiv 2019, arXiv:1910.01184. [Google Scholar]
- Laevo v2. 2016. Available online: https://exoskeletonreport.com/product/laevo/ (accessed on 6 December 2023).
- Backx. 2023. Available online: https://exoskeletonreport.com/product/backx/ (accessed on 6 December 2023).
- Van Sluijs, R.; Scholtysik, T.; Brunner, A.; Kuoni, L.; Bee, D.; Kos, M.; Bartenbach, V.; Lambercy, O. Design and evaluation of the OmniSuit: A passive occupational exoskeleton for back and shoulder support. Appl. Ergon. 2024, 120, 104332. [Google Scholar] [CrossRef] [PubMed]
- Van Sluijs, R.M.; Wehrli, M.; Brunner, A.; Lambercy, O. Evaluation of the physiological benefits of a passive back-support exoskeleton during lifting and working in forward leaning postures. J. Biomech. 2023, 149, 111489. [Google Scholar] [CrossRef]
- Whitfield, B.H.; Costigan, P.A.; Stevenson, J.M.; Smallman, C.L. Effect of an on-body ergonomic aid on oxygen consumption during a repetitive lifting task. Int. J. Ind. Ergon. 2014, 44, 39–44. [Google Scholar] [CrossRef]
- Herowear. APEX Exosuit. 2020. Available online: https://herowearexo.com/ (accessed on 4 April 2020).
- Imamura, Y.; Tanaka, T.; Tanaka, T.; Suzuki, Y.; Takizawa, K.; Yamanaka, M. Analysis of Trunk Stabilization Effect by Passive Power-Assist Device. J. Robot. Mechatronics 2014, 26, 791–798. [Google Scholar] [CrossRef]
- Lamers, E.P.; Yang, A.J.; Zelik, K.E. Feasibility of a Biomechanically-Assistive Garment to Reduce Low Back Loading During Leaning and Lifting. IEEE Trans. Biomed. Eng. 2018, 65, 1674–1680. [Google Scholar] [CrossRef]
- Näf, M.B.; Koopman, A.S.; Baltrusch, S.; Rodriguez-Guerrero, C.; Vanderborght, B.; Lefeber, D. Passive Back Support Exoskeleton Improves Range of Motion Using Flexible Beams. Front. Robot. AI 2018, 5, 72. [Google Scholar] [CrossRef]
- Exobionics. 2020. Available online: https://eksobionics.com/eksoworks/ (accessed on 6 December 2023).
- Alemi, M.M.; Geissinger, J.; Simon, A.A.; Chang, S.E.; Asbeck, A.T. A passive exoskeleton reduces peak and mean EMG during symmetric and asymmetric lifting. J. Electromyogr. Kinesiol. 2019, 47, 25–34. [Google Scholar] [CrossRef]
- Kornhauser, A.A. Dynamic Modeling of Gas Springs. J. Dyn. Syst. Meas. Control 1994, 116, 414–418. [Google Scholar] [CrossRef]
- Govaerts, R.; De Bock, S.; Provyn, S.; Vanderborght, B.; Roelands, B.; Meeusen, R.; De Pauw, K. The impact of an active and passive industrial back exoskeleton on functional performance. Ergonomics 2023, 67, 597–618. [Google Scholar] [CrossRef]
- Poliero, T.; Fanti, V.; Sposito, M.; Caldwell, D.G.; Natali, C.D. Active and Passive Back-Support Exoskeletons: A Comparison in Static and Dynamic Tasks. IEEE Robot. Autom. Lett. 2022, 7, 8463–8470. [Google Scholar] [CrossRef]
- Hal Lumbar Support. Available online: https://www.cyberdyne.jp/english/products/Lumbar_LaborSupport.html (accessed on 6 December 2023).
- Apogee. 2023. Available online: https://germanbionic.com/en/solutions/exoskeletons/apogee/ (accessed on 26 April 2024).
- Li, R.Y.M.; Ng, D.P.L. Wearable Robotics, Industrial Robots and Construction Worker’s Safety and Health. In Advances in Human Factors in Robots and Unmanned Systems; Springer: Cham, Switzerland, 2018; Volume 595. [Google Scholar] [CrossRef]
- Roveda, L.; Savani, L.; Arlati, S.; Dinon, T.; Legnani, G.; Molinari Tosatti, L. Design methodology of an active back-support exoskeleton with adaptable backbone-based kinematics. Int. J. Ind. Ergon. 2020, 79, 102991. [Google Scholar] [CrossRef]
- Ji, X.; Wang, D.; Li, P.; Zheng, L.; Sun, J.; Wu, X. SIAT-WEXv2: A Wearable Exoskeleton for Reducing Lumbar Load during Lifting Tasks. Complexity 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Ko, H.K.; Lee, S.W.; Koo, D.H.; Lee, I.; Hyun, D.J. Waist-assistive exoskeleton powered by a singular actuation mechanism for prevention of back-injury. Robot. Auton. Syst. 2018, 107, 1–9. [Google Scholar] [CrossRef]
- Toxiri, S.; Calanca, A.; Ortiz, J.; Fiorini, P.; Caldwell, D.G. A Parallel-Elastic Actuator for a Torque-Controlled Back-Support Exoskeleton. IEEE Robot. Autom. Lett. 2018, 3, 492–499. [Google Scholar] [CrossRef]
- Zhang, T.; Huang, H. A Lower-Back Robotic Exoskeleton: Industrial Handling Augmentation Used to Provide Spinal Support. IEEE Robot. Autom. Mag. 2018, 25, 95–106. [Google Scholar] [CrossRef]
- Lanotte, F.; Grazi, L.; Chen, B.; Vitiello, N.; Crea, S. A Low-Back Exoskeleton can Reduce the Erector Spinae Muscles Activity During Freestyle Symmetrical Load Lifting Tasks. In Proceedings of the 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), Enschede, The Netherlands, 26–29 August 2018; pp. 701–706. [Google Scholar] [CrossRef]
- Jafari, A.; Tsagarakis, N.; Caldwell, D. Energy efficient actuators with adjustable stiffness: A review on AwAS, AwAS-II and CompACT VSA changing stiffness based on lever mechanism. Ind. Robot. 2015, 42, 242–251. [Google Scholar] [CrossRef]
- Seong, H.S.; Kim, D.H.; Gaponov, I.; Ryu, J.H. Development of a Twisted String Actuator-based Exoskeleton for Hip Joint Assistance in Lifting Tasks. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 761–767. [Google Scholar] [CrossRef]
- Yao, Z.; Linnenberg, C.; Weidner, R.; Wulfsberg, J. Development of A Soft Power Suit for Lower Back Assistance. In Proceedings of the International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 5103–5109. [Google Scholar] [CrossRef]
- Muscle Suit. 2023. Available online: https://exoskeletonreport.com/product/muscle-suit/ (accessed on 6 December 2023).
- Yang, X.; Huang, T.-H.; Hu, H.; Yu, S.; Zhang, S.; Zhou, X.; Carriero, A.; Yue, G.; Su, H. Spine-inspired continuum soft exoskeleton for Stoop lifting assistance. IEEE Robot. Autom. Lett. 2019, 4, 4547–4554. [Google Scholar] [CrossRef]
- Myseismic Powered Clothing. Myseismic. 2023. Available online: https://www.myseismic.com (accessed on 6 December 2023).
- Li, J.M.; Molinaro, D.D.; King, A.S.; Mazumdar, A.; Young, A.J. Design and validation of a cable-driven asymmetric back exosuit. IEEE Trans. Robot. 2022, 38, 1489–1502. [Google Scholar] [CrossRef]
- Zhu, K.; Sharma, B.; Phan, P.T.; Davies, J.; Thai, M.T.; Hoang, T.T.; Nguyen, C.C.; Ji, A.; Nicotra, E.; Lovell, N.H.; et al. Development of a Smart Textile-Driven Soft Spine Exosuit for Lifting Tasks in Industrial Applications. In Proceedings of the IEEE/SICE International Symposium on System Integration (SII), Ha Long, Vietnam, 8–11 January 2024; pp. 13–18. [Google Scholar] [CrossRef]
- Kim, J.I.; Choi, J.; Kim, J.; Song, J.; Park, J.; Park, Y.-L. Bilateral Back Extensor Exosuit for multidimensional assistance and prevention of spinal injuries. Sci. Robot 2024, 9, eadk6717. [Google Scholar] [CrossRef]
- Lazzaroni, M.; Toxiri, S.; Caldwell, D.G.; Anastasi, S.; Monica, L.; De Momi, E.; Ortiz, J. Acceleration-based Assistive Strategy to Control a Back-support Exoskeleton for Load Handling: Preliminary Evaluation. In Proceedings of the IEEE 16th International Conference on Rehabilitation Robotics (ICORR), Toronto, ON, Canada, 24–28 June 2019; pp. 625–630. [Google Scholar] [CrossRef]
- Barsomian, C.; Eswaran, N.B.; Pesenti, M.; Gandolla, M.; Braghin, F.; Carpanzano, E.; Roveda, L. Dynamic characterization and control of a back-support exoskeleton 3D-printed cycloidal actuator. CIRP Ann. 2024, 73, 29–32. [Google Scholar] [CrossRef]
- Matijevich, E.S.; Volgyesi, P.; Zelik, K.E. A Promising Wearable Solution for the Practical and Accurate Monitoring of Low Back Loading in Manual Material Handling. Sensors 2021, 21, 340. [Google Scholar] [CrossRef]
- Jung, H.; Seo, J.; Seo, K.; Kim, D.; Park, S. Detection of Muscle Activation during Resistance Training Using Infrared Thermal Imaging. Sensors 2021, 21, 4505. [Google Scholar] [CrossRef] [PubMed]
- Baker, W.B.; Parthasarathy, A.B.; Busch, D.R.; Mesquita, R.C.; Greenberg, J.H.; Yodh, A.G. Modified Beer-Lambert law for blood flow. Biomed. Opt. Express 2014, 5, 4053–4075. [Google Scholar]
- Sikora, M.; Paszkiel, S. Muscle activity measurement using visible light and infrared. FAC-PapersOnLine 2019, 52, 329–334. [Google Scholar] [CrossRef]
- Hodges, P.W.; Pengel, L.H.; Herbert, R.D.; Gandevia, S.C. Measurement of muscle contraction with ultrasound imaging. Muscle Nerve 2003, 27, 682–692. [Google Scholar] [CrossRef]
- Yang, X.; Chen, Z.; Hettiarachchi, N.; Yan, J.; Liu, H. A Wearable Ultrasound System for Sensing Muscular Morphological Deformations. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 3370–3379. [Google Scholar] [CrossRef]
- Tarata, M.T. Mechanomyography versus Electromyography, in monitoring the muscular fatigue. Biomed. Eng. Online 2003, 2, 3. [Google Scholar] [CrossRef]
- Chudecka, M.; Lubkowska, A. Temperature changes of selected body’s surfaces of handball players in the course of training estimated by thermovision, and the study of the impact of physiological and morphological factors on the skin temperature. J. Therm. Biol. 2010, 35, 379–385. [Google Scholar] [CrossRef]
- Hildebrandt, C.; Zeilberger, K.; John Ring, E.F.; Raschner, C. The Application of Medical Infrared Thermography in Sports Medicine. In An International Perspective on Topics in Sports Medicine and Sports Injury; IntechOpen: London, UK, 2012; Volume 10. [Google Scholar] [CrossRef]
- Rodriguez-Sanz, D.; Losa-Iglesias, M.E.; Becerro-De-Bengoa-Vallejo, R.; Dorgham, H.A.A.; Benito-De-Pedro, M.; San-Antolín, M.; Mazoteras-Pardo, V.; Calvo-Lobo, C. Thermography related to electromyography in runners with functional equinus condition after running. Phys. Ther. Sport 2019, 40, 193–196. [Google Scholar] [CrossRef] [PubMed]
- Perpetuini, D.; Formenti, D.; Cardone, D.; Trecroci, A.; Rossi, A.; Di Credico, A.; Merati, G.; Alberti, G.; Di Baldassarre, A.; Merla, A. Can Data-Driven Supervised Machine Learning Approaches Applied to Infrared Thermal Imaging Data Estimate Muscular Activity and Fatigue? Sensors 2023, 23, 832. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.G.; Menon, C. A Review of Force Myography Research and Development. Sensors 2019, 19, 4557. [Google Scholar] [CrossRef] [PubMed]
- Sherif, O.; Bassuoni, M.M.; Mehrez, O. A survey on the state of the art of force myography technique (FMG): Analysis and assessment. Med. Biol. Eng. Comput. 2024, 62, 1313–1332. [Google Scholar] [CrossRef]
- Delva, M.L.; Lajoie, K.; Khoshnam, M.; Menon, C. Wrist-worn wearables based on force myography: On the significance of user anthropometry. Biomed. Eng. Online 2020, 19, 46. [Google Scholar] [CrossRef]
- Gantenbein, J.; Ahmadizadeh, C.; Heeb, O.; Lambercy, O.; Menon, C. Feasibility of force myography for the direct control of an assistive robotic hand orthosis in non-impaired individuals. J. Neuroeng. Rehabil. 2023, 20, 101. [Google Scholar] [CrossRef]
- Rehman, M.U.; Shah, K.; Haq, I.U.; Iqbal, S.; Ismail, M.A. A Wearable Force Myography-Based Armband for Recognition of Upper Limb Gestures. Sensors 2023, 23, 9357. [Google Scholar] [CrossRef]
- von Arx, M.; Liechti, M.; Connolly, L.; Bangerter, C.; Meier, M.L.; Schmid, S. From Stoop to Squat: A Comprehensive Analysis of Lumbar Loading Among Different Lifting Styles. Front. Bioeng. Biotechnol. 2021, 9, 769117. [Google Scholar]
- Antsaklis, P.J.; Passino, K.M. (Eds.). An Introduction to Intelligent and Autonomous Control; Kluwer Academic Publishers: Norwell, MA, USA, 1993; ISBN 0-7923-9267-1. [Google Scholar]
- Radosavovic, I.; Xiao, T.; Zhang, B.; Darrell, T.; Jitendra Malik, J.; Sreenath, K. Real-World Humanoid Locomotion with Reinforcement Learning. arXiv 2023, arXiv:2303.03381. [Google Scholar]
- Belo, J.P.R.; Romero, R.A.F. A Social Human-Robot Interaction Simulator for Reinforcement Learning Systems, 2021. In Proceedings of the 20th International Conference on Advanced Robotics (ICAR), Ljubljana, Slovenia, 6–10 December 2021; pp. 350–355. [Google Scholar] [CrossRef]
- Yan, B.; Zhu, H.; Li, X.; Li, X. Reinforcement Learning Based Soccer Kicking for Humanoid Robots. In Proceedings of the 2nd International Conference on the Frontiers of Robotics and Software Engineering (FRSE 2024); FRSE 2024. Lecture Notes in Networks and Systems; Springer: Singapore, 2025; Volume 1271. [Google Scholar] [CrossRef]
- Muijzer-Witteveen, H.; Sibum, N.; van Dijsseldonk, R.; Keijsers, N.; van Asseldonk, E. Questionnaire results of user experiences with wearable exoskeletons and their preferences for sensory feedback. J. Neuroeng. Rehabil. 2018, 15, 112. [Google Scholar] [CrossRef]
- Ingraham, K.A.; Tucker, M.; Ames, A.D.; Rouse, E.J.; Shepherd, M.K. Leveraging user preference in the design and evaluation of lower-limb exoskeletons and prostheses. Curr. Opin. Biomed. Eng. 2023, 28, 100487. [Google Scholar] [CrossRef]
- Pesenti, M.; Antonietti, A.; Gandolla, M.; Pedrocchi, A. Towards a Functional Performance Validation Standard for Industrial Low-Back Exoskeletons: State of the Art Review. Sensors 2021, 21, 808. [Google Scholar] [CrossRef] [PubMed]
EXO ID | TASK | STRUCTURE | ACTUATION | P or C |
---|---|---|---|---|
IX-BACK [37] | stoop or squat S or AS lifting | rigid | springs | C |
Comau MateXB [38] | stoop or squat lifting | rigid | springs | C |
Aldak [39] | stoop or squat lifting | rigid | springs | C |
- [40] | stoop or squat lifting | rigid | springs | P |
Laevo v2 [41] | S or AS stoop or squat lifting | hybrid | gas springs | C |
IX BACK (AIR) [42] | stoop or squat lifting | rigid | gas springs | C |
LiftSuit 2.0 [43,44] | stoop lifting | soft | textile springs | C |
PLAD [45] | stoop or squat lifting, holding | soft | elastic bands | P |
APEX [46] | S or AS stoop lifting | soft | elastic bands | C |
Smart Suit Lite [47] | stoop lifting | soft | elastic bands | P |
B.A. Garment [48] | stoop or squat lifting | soft | elastic bands | P |
SPEXOR [49] | stoop or squat lifting | flexible | flexible beams | P |
HULC [50] | lifting | rigid | hydraulic | C |
VT-Lowe exoskeleton [51] | S or AS stoop or squat and freestyle | rigid | carbon fiber beams | P or C |
EXO ID | TASK | STRUCTURE | ACTUATION | P/C |
---|---|---|---|---|
Hal [55] | S or AS lifting | rigid | electric motor | C |
Apogee [56] | stoop or squat lifting, carrying | rigid | electric motor | C |
AWN-03 Panasonic [57] | stoop or squat lifting | rigid | electric motor | C |
SIAT WEXv2 [59] | stoop or squat lifting | rigid | electric motor | P |
Hyundai H-WEX [60] | lifting | rigid | electric motor, wires | P |
RoboMate [61] | stoop or squat lifting | rigid | PEAs | P |
Spine-assistive exo [62] | S or AS stoop or squat lifting | rigid | SEAs | P |
APO [63] | stoop lifting | rigid | SEAs | P |
BSE [33] | stoop or squat | rigid | D-SEA | P |
HJE [65] | stoop or squat lifting | rigid | TSA | P |
Backbone [58] | squat or stoop lifting | rigid | electric motor | P |
Soft suit [66] | S or AS stoop lifting | soft | TSA | P |
Muscle Suit [67] | S or AS lifting | soft | pneumatic (compressed air) | C |
Spine-inspired [68] | S or AS stoop lifting | soft | electric motors, cable driven | P |
Superflex [69] | stoop or squat lifting | soft | electric muscular actuators | P |
ABX [70] | S or AS stoop or squat lifting | soft | motor plus cable | P |
Active back exosuit [34] | S or AS stoop or squat lifting, carrying | soft | motor plus ribbon cable | P or C |
SARE [71] | stoop lifting | soft | MSAM | P |
BBEX [72] | S or AS stoop or squat lifting | hybrid | secondary erector spinae (SES) mechanism | P |
EXO ID | Kinematic or Dynamic Sensors | Physiological Sensors | Control Feedback | Control Strategy |
---|---|---|---|---|
SIAT-WEXv2 | IMU, encoders | sEMG for validation only (10 subjects) | Human–machine movement disparities, hip angle | Model-based control and fuzzy adaptive algorithm |
Hyundai H-WE | IMU, Hall sensor | sEMG for validation only (9 subjects) | Upper body absolute sagittal inclination | Friction and gravity compensation, virtual spring, feedback, activity recognition |
Robo-Mate | Torque sensor, IMU | sEMG for control | Human–machine interaction torque, trunk inclination, acceleration | Torque feedforward and feedback PD control based on trunk inclination, friction compensation, acceleration based-control |
Spine-assistive | Encoders, IMUs, strain gauge, pressure sensor | sEMG for validation only (1 subject) | Position, velocity, acceleration, interaction forces, holding pressure | Torque feedforward and feedback PD control based on trunk inclination, friction compensation, acceleration based-control |
APO | Encoders | sEMG for validation only (5 subjects) | Hip angle and velocity | Reference torque bell-shaped trajectory control |
BSE | Longitudinal encoder, encoder, IMU | sEMG for validation only (14 subjects) | Hip angle and velocity | Virtual impedance, feedforward and feedback torque control |
Soft suit | IMU, force sensor | sEMG for validation only (1 subject) | Tensile force, trunk flexion angle, velocity acceleration | Force control |
Spine-inspired | Torque sensor, IMU | - | Interaction force, trunk motion | Virtual impedance force reference PID control. PID velocity and current low-level control |
ABX | Load cells, IMU | sEMG for validation only | Interaction force, trunk orientation | Tension force control |
Active back exosuit | IMUs, Load cells | sEMG for validation only (15 subjects) | Relative trunk angle and velocity | Adaptive impedance control |
Backbone | Encoder | - | Reference trajectory | Impedance & LQR state-space control |
BBEX [72] | Force/torque as well as kinematic sensors | - | Posture estimation feedback, force/torque feedback | P |
Sensor Type | Reliability | Correlation to Muscular Activity | Need to Be Placed on the Skin | Inertia | Sensitiveness to Artifacts |
---|---|---|---|---|---|
NIRS | good | high | yes | moderate | modearte |
USMG | good | high | yes | low | modearte |
MMG | good | very high | yes | low | high |
EMG | good or high | very high | yes | low | high |
IRT | good | potentially moderate | no | moderate | moderate |
FMG | good | high | no | low | moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dal Prete, A.; Gandolla, M.; Andreoni, G.; Braghin, F. Low Back Exoskeletons in Industry 5.0: From Machines to Perceiving Co-Pilots—A State-of-the-Art Review. Sensors 2025, 25, 1958. https://doi.org/10.3390/s25071958
Dal Prete A, Gandolla M, Andreoni G, Braghin F. Low Back Exoskeletons in Industry 5.0: From Machines to Perceiving Co-Pilots—A State-of-the-Art Review. Sensors. 2025; 25(7):1958. https://doi.org/10.3390/s25071958
Chicago/Turabian StyleDal Prete, Andrea, Marta Gandolla, Giuseppe Andreoni, and Francesco Braghin. 2025. "Low Back Exoskeletons in Industry 5.0: From Machines to Perceiving Co-Pilots—A State-of-the-Art Review" Sensors 25, no. 7: 1958. https://doi.org/10.3390/s25071958
APA StyleDal Prete, A., Gandolla, M., Andreoni, G., & Braghin, F. (2025). Low Back Exoskeletons in Industry 5.0: From Machines to Perceiving Co-Pilots—A State-of-the-Art Review. Sensors, 25(7), 1958. https://doi.org/10.3390/s25071958